--- base_model: - Undi95/Llama-3-Unholy-8B - Locutusque/llama-3-neural-chat-v1-8b - ruslanmv/Medical-Llama3-8B-16bit library_name: transformers tags: - mergekit - merge license: other datasets: - mlabonne/orpo-dpo-mix-40k - Open-Orca/SlimOrca-Dedup - jondurbin/airoboros-3.2 - microsoft/orca-math-word-problems-200k - m-a-p/Code-Feedback - MaziyarPanahi/WizardLM_evol_instruct_V2_196k - ruslanmv/ai-medical-chatbot model-index: - name: Medichat-Llama3-8B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.13 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.90 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 49.65 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.93 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 60.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Medichat-Llama3-8B name: Open LLM Leaderboard --- ### Medichat-Llama3-8B Built upon the powerful LLaMa-3 architecture and fine-tuned on an extensive dataset of health information, this model leverages its vast medical knowledge to offer clear, comprehensive answers. The following YAML configuration was used to produce this model: ```yaml models: - model: Undi95/Llama-3-Unholy-8B parameters: weight: [0.25, 0.35, 0.45, 0.35, 0.25] density: [0.1, 0.25, 0.5, 0.25, 0.1] - model: Locutusque/llama-3-neural-chat-v1-8b - model: ruslanmv/Medical-Llama3-8B-16bit parameters: weight: [0.55, 0.45, 0.35, 0.45, 0.55] density: [0.1, 0.25, 0.5, 0.25, 0.1] merge_method: dare_ties base_model: Locutusque/llama-3-neural-chat-v1-8b parameters: int8_mask: true dtype: bfloat16 ``` # Comparision Against Dr.Samantha 7B | Subject | Medichat-Llama3-8B Accuracy (%) | Dr. Samantha Accuracy (%) | |-------------------------|---------------------------------|---------------------------| | Clinical Knowledge | 71.70 | 52.83 | | Medical Genetics | 78.00 | 49.00 | | Human Aging | 70.40 | 58.29 | | Human Sexuality | 73.28 | 55.73 | | College Medicine | 62.43 | 38.73 | | Anatomy | 64.44 | 41.48 | | College Biology | 72.22 | 52.08 | | High School Biology | 77.10 | 53.23 | | Professional Medicine | 63.97 | 38.73 | | Nutrition | 73.86 | 50.33 | | Professional Psychology | 68.95 | 46.57 | | Virology | 54.22 | 41.57 | | High School Psychology | 83.67 | 66.60 | | **Average** | **70.33** | **48.85** | The current model demonstrates a substantial improvement over the previous [Dr. Samantha](sethuiyer/Dr_Samantha-7b) model in terms of subject-specific knowledge and accuracy. ### Usage: ```python from transformers import AutoTokenizer, AutoModelForCausalLM # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("sethuiyer/Medichat-Llama3-8B") model = AutoModelForCausalLM.from_pretrained("sethuiyer/Medichat-Llama3-8B").to("cuda") # Function to format and generate response with prompt engineering using a chat template def askme(question): sys_message = ''' You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help. ''' # Create messages structured for the chat template messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": question}] # Applying chat template prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True) # Adjust max_new_tokens for longer responses # Extract and return the generated text answer = tokenizer.batch_decode(outputs)[0].strip() return answer # Example usage question = ''' Symptoms: Dizziness, headache and nausea. What is the differnetial diagnosis? ''' print(askme(question)) ```