File size: 7,238 Bytes
8cc04c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# -*- coding: utf-8 -*-
"""Hugging Face Demo V1.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1UPgdrPyLAvEWpJifn7Y6eblkiM2yc0_3
"""
import pandas as pd
import numpy as np
import re
import itertools
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import linear_kernel
!pip install fuzzywuzzy
from fuzzywuzzy import fuzz
from sklearn.feature_extraction.text import TfidfVectorizer
!pip install gradio
import gradio as gr
clean_ratings_tags = "/content/steam-clean-games.csv"
df = pd.read_csv(clean_ratings_tags, error_bad_lines=False, encoding='utf-8')
# the function to extract years
def extract_year(date):
year = date[:4]
if year.isnumeric():
return int(year)
else:
return np.nan
df['year'] = df['release_date'].apply(extract_year)
df['steamspy_tags'] = df['steamspy_tags'].str.replace(' ','-')
df['genres'] = df['steamspy_tags'].str.replace(';',' ')
counts = dict()
for i in df.index:
for g in df.loc[i,'genres'].split(' '):
if g not in counts:
counts[g] = 1
else:
counts[g] = counts[g] + 1
def create_score(row):
pos_count = row['positive_ratings']
neg_count = row['negative_ratings']
total_count = pos_count + neg_count
average = pos_count / total_count
return round(average, 2)
def total_ratings(row):
pos_count = row['positive_ratings']
neg_count = row['negative_ratings']
total_count = pos_count + neg_count
return total_count
df['total_ratings'] = df.apply(total_ratings, axis=1)
df['score'] = df.apply(create_score, axis=1)
# Calculate mean of vote average column
C = df['score'].mean()
m = df['total_ratings'].quantile(0.90)
# Function that computes the weighted rating of each game
def weighted_rating(x, m=m, C=C):
v = x['total_ratings']
R = x['score']
# Calculation based on the IMDB formula
return round((v/(v+m) * R) + (m/(m+v) * C), 2)
# Define a new feature 'score' and calculate its value with `weighted_rating()`
df['weighted_score'] = df.apply(weighted_rating, axis=1)
# create an object for TfidfVectorizer
tfidf_vector = TfidfVectorizer(stop_words='english')
tfidf_matrix = tfidf_vector.fit_transform(df['genres'])
# create the cosine similarity matrix
sim_matrix = linear_kernel(tfidf_matrix,tfidf_matrix)
# create a function to find the closest title
def matching_score(a,b):
#fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance
return fuzz.ratio(a,b)
"""# Make our Recommendation Engine
We need combine our formatted dataset with the similarity logic to return recommendations. This is also where we can fine-tune it if we do not like the results.
"""
##These functions needed to return different attributes of the recommended game titles
#Convert index to title_year
def get_title_year_from_index(index):
return df[df.index == index]['year'].values[0]
#Convert index to title
def get_title_from_index(index):
return df[df.index == index]['name'].values[0]
#Convert index to title
def get_index_from_title(title):
return df[df.name == title].index.values[0]
#Convert index to score
def get_score_from_index(index):
return df[df.index == index]['score'].values[0]
#Convert index to weighted score
def get_weighted_score_from_index(index):
return df[df.index == index]['weighted_score'].values[0]
#Convert index to total_ratings
def get_total_ratings_from_index(index):
return df[df.index == index]['total_ratings'].values[0]
#Convert index to platform
def get_platform_from_index(index):
return df[df.index == index]['platforms'].values[0]
# A function to return the most similar title to the words a user type
def find_closest_title(title):
#matching_score(a,b) > a is the current row, b is the title we're trying to match
leven_scores = list(enumerate(df['name'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~]
closest_title = get_title_from_index(sorted_leven_scores[0][0])
distance_score = sorted_leven_scores[0][1]
return closest_title, distance_score
def gradio_contents_based_recommender_v2(game, how_many, sort_option, min_year, platform, min_score):
#Return closest game title match
closest_title, distance_score = find_closest_title(game)
#Create a Dataframe with these column headers
recomm_df = pd.DataFrame(columns=['Game Title', 'Year', 'Score', 'Weighted Score', 'Total Ratings'])
#find the corresponding index of the game title
games_index = get_index_from_title(closest_title)
#return a list of the most similar game indexes as a list
games_list = list(enumerate(sim_matrix[int(games_index)]))
#Sort list of similar games from top to bottom
similar_games = list(filter(lambda x:x[0] != int(games_index), sorted(games_list,key=lambda x:x[1], reverse=True)))
#Print the game title the similarity matrix is based on
print('Here\'s the list of games similar to '+'\033[1m'+str(closest_title)+'\033[0m'+'.\n')
#Only return the games that are on selected platform
n_games = []
for i,s in similar_games:
if platform in get_platform_from_index(i):
n_games.append((i,s))
#Only return the games that are above the minimum score
high_scores = []
for i,s in n_games:
if get_score_from_index(i) > min_score:
high_scores.append((i,s))
#Return the game tuple (game index, game distance score) and store in a dataframe
for i,s in n_games[:how_many]:
#Dataframe will contain attributes based on game index
row = {'Game Title': get_title_from_index(i), 'Year': get_title_year_from_index(i), 'Score': get_score_from_index(i),
'Weighted Score': get_weighted_score_from_index(i),
'Total Ratings': get_total_ratings_from_index(i),}
#Append each row to this dataframe
recomm_df = recomm_df.append(row, ignore_index = True)
#Sort dataframe by Sort_Option provided by user
recomm_df = recomm_df.sort_values(sort_option, ascending=False)
#Only include games released same or after minimum year selected
recomm_df = recomm_df[recomm_df['Year'] >= min_year]
return recomm_df
#Create list of unique calendar years based on main df column
years_sorted = sorted(list(df['year'].unique()))
#Interface will include these buttons based on parameters in the function with a dataframe output
recommender = gr.Interface(gradio_contents_based_recommender_v2, ["text", gr.inputs.Slider(1, 20, step=int(1)),
gr.inputs.Radio(['Year','Score','Weighted Score','Total Ratings']),
gr.inputs.Slider(int(years_sorted[0]), int(years_sorted[-1]), step=int(1)),
gr.inputs.Radio(['windows','xbox','playstation','linux','mac']),
gr.inputs.Slider(0, 10, step=0.1)],
"dataframe")
recommender.launch(debug=True) |