--- language: - tr license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-medium model-index: - name: Whisper Medium Turkish CV results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 tr type: mozilla-foundation/common_voice_11_0 config: tr split: test args: tr metrics: - type: wer value: 10.503340419070756 name: Wer --- # Whisper Medium Turkish This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 Turkish dataset. It achieves the following results on the evaluation set: - Loss: 0.1879 - Wer: 10.5033 ## Model description The model is fine-tuned for 1000 steps/updates. - Zero-shot - 20.89 (CV11) - Fine-tune on CV11 - 10.50 (CV11) (-49%) ------------------------------------------------------------------- - Zeroshot - 10.4 (Google Fluers) - Fine-tune on CV11 - 9.26 (Google Fluers) ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0348 | 3.05 | 1000 | 0.1879 | 10.5033 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2