File size: 1,675 Bytes
fb8c19c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
base_model: digitalepidemiologylab/covid-twitter-bert-v2
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: FakeNewsDetection_Cross-Sean
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# FakeNewsDetection_Cross-Sean

This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0824
- F1: 0.9882

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0786        | 1.0   | 1100 | 0.0654          | 0.9845 |
| 0.0386        | 2.0   | 2200 | 0.0574          | 0.9852 |
| 0.0222        | 3.0   | 3300 | 0.0689          | 0.9864 |
| 0.0098        | 4.0   | 4400 | 0.0924          | 0.9848 |
| 0.0059        | 5.0   | 5500 | 0.0824          | 0.9882 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu118
- Datasets 2.17.0
- Tokenizers 0.15.1