File size: 16,002 Bytes
e7dd443 8edc5d6 e7dd443 8edc5d6 e7dd443 76a55af e7dd443 76a55af e7dd443 8edc5d6 e7dd443 76a55af e7dd443 76a55af 8edc5d6 76a55af 8edc5d6 76a55af 8edc5d6 76a55af 8edc5d6 76a55af 8edc5d6 76a55af 8edc5d6 76a55af 8edc5d6 76a55af 8edc5d6 76a55af 8edc5d6 76a55af 8edc5d6 e7dd443 76a55af e7dd443 8edc5d6 e7dd443 8edc5d6 e7dd443 76a55af e7dd443 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
CartPole-v1: &cartpole-defaults
n_timesteps: !!float 1e5
env_hyperparams:
n_envs: 8
algo_hyperparams:
n_steps: 32
batch_size: 256
n_epochs: 20
gae_lambda: 0.8
gamma: 0.98
ent_coef: 0.0
learning_rate: 0.001
learning_rate_decay: linear
clip_range: 0.2
clip_range_decay: linear
eval_hyperparams:
step_freq: !!float 2.5e4
CartPole-v0:
<<: *cartpole-defaults
n_timesteps: !!float 5e4
MountainCar-v0:
n_timesteps: !!float 1e6
env_hyperparams:
normalize: true
n_envs: 16
algo_hyperparams:
n_steps: 16
n_epochs: 4
gae_lambda: 0.98
gamma: 0.99
ent_coef: 0.0
MountainCarContinuous-v0:
n_timesteps: !!float 1e5
env_hyperparams:
normalize: true
n_envs: 4
# policy_hyperparams:
# init_layers_orthogonal: false
# log_std_init: -3.29
# use_sde: true
algo_hyperparams:
n_steps: 512
batch_size: 256
n_epochs: 10
learning_rate: !!float 7.77e-5
ent_coef: 0.01 # 0.00429
ent_coef_decay: linear
clip_range: 0.1
gae_lambda: 0.9
max_grad_norm: 5
vf_coef: 0.19
eval_hyperparams:
step_freq: 5000
Acrobot-v1:
n_timesteps: !!float 1e6
env_hyperparams:
n_envs: 16
normalize: true
algo_hyperparams:
n_steps: 256
n_epochs: 4
gae_lambda: 0.94
gamma: 0.99
ent_coef: 0.0
LunarLander-v2:
n_timesteps: !!float 4e6
env_hyperparams:
n_envs: 16
algo_hyperparams:
n_steps: 1024
batch_size: 64
n_epochs: 4
gae_lambda: 0.98
gamma: 0.999
learning_rate: !!float 5e-4
learning_rate_decay: linear
clip_range: 0.2
clip_range_decay: linear
ent_coef: 0.01
normalize_advantage: false
BipedalWalker-v3:
n_timesteps: !!float 10e6
env_hyperparams:
n_envs: 16
normalize: true
algo_hyperparams:
n_steps: 2048
batch_size: 64
gae_lambda: 0.95
gamma: 0.99
n_epochs: 10
ent_coef: 0.001
learning_rate: !!float 2.5e-4
learning_rate_decay: linear
clip_range: 0.2
clip_range_decay: linear
CarRacing-v0: &carracing-defaults
n_timesteps: !!float 4e6
env_hyperparams:
n_envs: 8
frame_stack: 4
policy_hyperparams: &carracing-policy-defaults
use_sde: true
log_std_init: -2
init_layers_orthogonal: false
activation_fn: relu
share_features_extractor: false
cnn_flatten_dim: 256
hidden_sizes: [256]
algo_hyperparams:
n_steps: 512
batch_size: 128
n_epochs: 10
learning_rate: !!float 1e-4
learning_rate_decay: linear
gamma: 0.99
gae_lambda: 0.95
ent_coef: 0.0
sde_sample_freq: 4
max_grad_norm: 0.5
vf_coef: 0.5
clip_range: 0.2
impala-CarRacing-v0:
<<: *carracing-defaults
env_id: CarRacing-v0
policy_hyperparams:
<<: *carracing-policy-defaults
cnn_style: impala
init_layers_orthogonal: true
cnn_layers_init_orthogonal: false
hidden_sizes: []
# BreakoutNoFrameskip-v4
# PongNoFrameskip-v4
# SpaceInvadersNoFrameskip-v4
# QbertNoFrameskip-v4
_atari: &atari-defaults
n_timesteps: !!float 1e7
env_hyperparams: &atari-env-defaults
n_envs: 8
frame_stack: 4
no_reward_timeout_steps: 1000
no_reward_fire_steps: 500
vec_env_class: async
policy_hyperparams: &atari-policy-defaults
activation_fn: relu
algo_hyperparams: &atari-algo-defaults
n_steps: 128
batch_size: 256
n_epochs: 4
learning_rate: !!float 2.5e-4
learning_rate_decay: linear
clip_range: 0.1
clip_range_decay: linear
vf_coef: 0.5
ent_coef: 0.01
eval_hyperparams:
deterministic: false
_norm-rewards-atari: &norm-rewards-atari-default
<<: *atari-defaults
env_hyperparams:
<<: *atari-env-defaults
clip_atari_rewards: false
normalize: true
normalize_kwargs:
norm_obs: false
norm_reward: true
norm-rewards-BreakoutNoFrameskip-v4:
<<: *norm-rewards-atari-default
env_id: BreakoutNoFrameskip-v4
debug-PongNoFrameskip-v4:
<<: *atari-defaults
device: cpu
env_id: PongNoFrameskip-v4
env_hyperparams:
<<: *atari-env-defaults
vec_env_class: sync
_impala-atari: &impala-atari-defaults
<<: *atari-defaults
policy_hyperparams:
<<: *atari-policy-defaults
cnn_style: impala
cnn_flatten_dim: 256
init_layers_orthogonal: true
cnn_layers_init_orthogonal: false
impala-PongNoFrameskip-v4:
<<: *impala-atari-defaults
env_id: PongNoFrameskip-v4
impala-BreakoutNoFrameskip-v4:
<<: *impala-atari-defaults
env_id: BreakoutNoFrameskip-v4
impala-SpaceInvadersNoFrameskip-v4:
<<: *impala-atari-defaults
env_id: SpaceInvadersNoFrameskip-v4
impala-QbertNoFrameskip-v4:
<<: *impala-atari-defaults
env_id: QbertNoFrameskip-v4
_microrts: µrts-defaults
<<: *atari-defaults
n_timesteps: !!float 2e6
env_hyperparams: µrts-env-defaults
n_envs: 8
vec_env_class: sync
mask_actions: true
policy_hyperparams: µrts-policy-defaults
<<: *atari-policy-defaults
cnn_style: microrts
cnn_flatten_dim: 128
algo_hyperparams: µrts-algo-defaults
<<: *atari-algo-defaults
clip_range_decay: none
clip_range_vf: 0.1
ppo2_vf_coef_halving: true
eval_hyperparams: µrts-eval-defaults
deterministic: false # Good idea because MultiCategorical mode isn't great
_no-mask-microrts: &no-mask-microrts-defaults
<<: *microrts-defaults
env_hyperparams:
<<: *microrts-env-defaults
mask_actions: false
MicrortsMining-v1-NoMask:
<<: *no-mask-microrts-defaults
env_id: MicrortsMining-v1
MicrortsAttackShapedReward-v1-NoMask:
<<: *no-mask-microrts-defaults
env_id: MicrortsAttackShapedReward-v1
MicrortsRandomEnemyShapedReward3-v1-NoMask:
<<: *no-mask-microrts-defaults
env_id: MicrortsRandomEnemyShapedReward3-v1
_microrts_ai: µrts-ai-defaults
<<: *microrts-defaults
n_timesteps: !!float 100e6
additional_keys_to_log: ["microrts_stats", "microrts_results"]
env_hyperparams: µrts-ai-env-defaults
n_envs: 24
env_type: microrts
make_kwargs: µrts-ai-env-make-kwargs-defaults
num_selfplay_envs: 0
max_steps: 4000
render_theme: 2
map_paths: [maps/16x16/basesWorkers16x16.xml]
reward_weight: [10.0, 1.0, 1.0, 0.2, 1.0, 4.0]
policy_hyperparams: µrts-ai-policy-defaults
<<: *microrts-policy-defaults
cnn_flatten_dim: 256
actor_head_style: gridnet
algo_hyperparams: µrts-ai-algo-defaults
<<: *microrts-algo-defaults
learning_rate: !!float 2.5e-4
learning_rate_decay: linear
n_steps: 512
batch_size: 3072
n_epochs: 4
ent_coef: 0.01
vf_coef: 0.5
max_grad_norm: 0.5
clip_range: 0.1
clip_range_vf: 0.1
eval_hyperparams: µrts-ai-eval-defaults
<<: *microrts-eval-defaults
score_function: mean
max_video_length: 4000
env_overrides: µrts-ai-eval-env-overrides
make_kwargs:
<<: *microrts-ai-env-make-kwargs-defaults
max_steps: 4000
reward_weight: [1.0, 0, 0, 0, 0, 0]
MicrortsAttackPassiveEnemySparseReward-v3:
<<: *microrts-ai-defaults
n_timesteps: !!float 2e6
env_id: MicrortsAttackPassiveEnemySparseReward-v3 # Workaround to keep model name simple
env_hyperparams:
<<: *microrts-ai-env-defaults
bots:
passiveAI: 24
MicrortsDefeatRandomEnemySparseReward-v3: µrts-random-ai-defaults
<<: *microrts-ai-defaults
n_timesteps: !!float 2e6
env_id: MicrortsDefeatRandomEnemySparseReward-v3 # Workaround to keep model name simple
env_hyperparams:
<<: *microrts-ai-env-defaults
bots:
randomBiasedAI: 24
enc-dec-MicrortsDefeatRandomEnemySparseReward-v3:
<<: *microrts-random-ai-defaults
policy_hyperparams:
<<: *microrts-ai-policy-defaults
cnn_style: gridnet_encoder
actor_head_style: gridnet_decoder
v_hidden_sizes: [128]
unet-MicrortsDefeatRandomEnemySparseReward-v3:
<<: *microrts-random-ai-defaults
# device: cpu
policy_hyperparams:
<<: *microrts-ai-policy-defaults
actor_head_style: unet
v_hidden_sizes: [256, 128]
algo_hyperparams:
<<: *microrts-ai-algo-defaults
learning_rate: !!float 2.5e-4
learning_rate_decay: spike
MicrortsDefeatCoacAIShaped-v3: µrts-coacai-defaults
<<: *microrts-ai-defaults
env_id: MicrortsDefeatCoacAIShaped-v3 # Workaround to keep model name simple
n_timesteps: !!float 300e6
env_hyperparams: µrts-coacai-env-defaults
<<: *microrts-ai-env-defaults
bots:
coacAI: 24
eval_hyperparams: µrts-coacai-eval-defaults
<<: *microrts-ai-eval-defaults
step_freq: !!float 1e6
n_episodes: 26
env_overrides: µrts-coacai-eval-env-overrides
<<: *microrts-ai-eval-env-overrides
n_envs: 26
bots:
coacAI: 2
randomBiasedAI: 2
randomAI: 2
passiveAI: 2
workerRushAI: 2
lightRushAI: 2
naiveMCTSAI: 2
mixedBot: 2
rojo: 2
izanagi: 2
tiamat: 2
droplet: 2
guidedRojoA3N: 2
MicrortsDefeatCoacAIShaped-v3-diverseBots: µrts-diverse-defaults
<<: *microrts-coacai-defaults
env_hyperparams:
<<: *microrts-coacai-env-defaults
bots:
coacAI: 18
randomBiasedAI: 2
lightRushAI: 2
workerRushAI: 2
enc-dec-MicrortsDefeatCoacAIShaped-v3-diverseBots:
µrts-env-dec-diverse-defaults
<<: *microrts-diverse-defaults
policy_hyperparams:
<<: *microrts-ai-policy-defaults
cnn_style: gridnet_encoder
actor_head_style: gridnet_decoder
v_hidden_sizes: [128]
debug-enc-dec-MicrortsDefeatCoacAIShaped-v3-diverseBots:
<<: *microrts-env-dec-diverse-defaults
n_timesteps: !!float 1e6
unet-MicrortsDefeatCoacAIShaped-v3-diverseBots: µrts-unet-defaults
<<: *microrts-diverse-defaults
policy_hyperparams:
<<: *microrts-ai-policy-defaults
actor_head_style: unet
v_hidden_sizes: [256, 128]
algo_hyperparams: µrts-unet-algo-defaults
<<: *microrts-ai-algo-defaults
learning_rate: !!float 2.5e-4
learning_rate_decay: spike
Microrts-selfplay-unet: µrts-selfplay-defaults
<<: *microrts-unet-defaults
env_hyperparams: µrts-selfplay-env-defaults
<<: *microrts-ai-env-defaults
make_kwargs: µrts-selfplay-env-make-kwargs-defaults
<<: *microrts-ai-env-make-kwargs-defaults
num_selfplay_envs: 36
self_play_kwargs:
num_old_policies: 12
save_steps: 300000
swap_steps: 6000
swap_window_size: 4
window: 33
eval_hyperparams: µrts-selfplay-eval-defaults
<<: *microrts-coacai-eval-defaults
env_overrides: µrts-selfplay-eval-env-overrides
<<: *microrts-coacai-eval-env-overrides
self_play_kwargs: {}
Microrts-selfplay-unet-winloss: µrts-selfplay-winloss-defaults
<<: *microrts-selfplay-defaults
env_hyperparams:
<<: *microrts-selfplay-env-defaults
make_kwargs:
<<: *microrts-selfplay-env-make-kwargs-defaults
reward_weight: [1.0, 0, 0, 0, 0, 0]
algo_hyperparams: µrts-selfplay-winloss-algo-defaults
<<: *microrts-unet-algo-defaults
gamma: 0.999
Microrts-selfplay-unet-decay: µrts-selfplay-decay-defaults
<<: *microrts-selfplay-defaults
microrts_reward_decay_callback: true
algo_hyperparams:
<<: *microrts-unet-algo-defaults
gamma_end: 0.999
Microrts-selfplay-unet-debug: µrts-selfplay-debug-defaults
<<: *microrts-selfplay-decay-defaults
eval_hyperparams:
<<: *microrts-selfplay-eval-defaults
step_freq: !!float 1e5
env_overrides:
<<: *microrts-selfplay-eval-env-overrides
n_envs: 24
bots:
coacAI: 12
randomBiasedAI: 4
workerRushAI: 4
lightRushAI: 4
Microrts-selfplay-unet-debug-mps:
<<: *microrts-selfplay-debug-defaults
device: mps
HalfCheetahBulletEnv-v0: &pybullet-defaults
n_timesteps: !!float 2e6
env_hyperparams: &pybullet-env-defaults
n_envs: 16
normalize: true
policy_hyperparams: &pybullet-policy-defaults
pi_hidden_sizes: [256, 256]
v_hidden_sizes: [256, 256]
activation_fn: relu
algo_hyperparams: &pybullet-algo-defaults
n_steps: 512
batch_size: 128
n_epochs: 20
gamma: 0.99
gae_lambda: 0.9
ent_coef: 0.0
max_grad_norm: 0.5
vf_coef: 0.5
learning_rate: !!float 3e-5
clip_range: 0.4
AntBulletEnv-v0:
<<: *pybullet-defaults
policy_hyperparams:
<<: *pybullet-policy-defaults
algo_hyperparams:
<<: *pybullet-algo-defaults
Walker2DBulletEnv-v0:
<<: *pybullet-defaults
algo_hyperparams:
<<: *pybullet-algo-defaults
clip_range_decay: linear
HopperBulletEnv-v0:
<<: *pybullet-defaults
algo_hyperparams:
<<: *pybullet-algo-defaults
clip_range_decay: linear
HumanoidBulletEnv-v0:
<<: *pybullet-defaults
n_timesteps: !!float 1e7
env_hyperparams:
<<: *pybullet-env-defaults
n_envs: 8
policy_hyperparams:
<<: *pybullet-policy-defaults
# log_std_init: -1
algo_hyperparams:
<<: *pybullet-algo-defaults
n_steps: 2048
batch_size: 64
n_epochs: 10
gae_lambda: 0.95
learning_rate: !!float 2.5e-4
clip_range: 0.2
_procgen: &procgen-defaults
env_hyperparams: &procgen-env-defaults
env_type: procgen
n_envs: 64
# grayscale: false
# frame_stack: 4
normalize: true # procgen only normalizes reward
make_kwargs: &procgen-make-kwargs-defaults
num_threads: 8
policy_hyperparams: &procgen-policy-defaults
activation_fn: relu
cnn_style: impala
cnn_flatten_dim: 256
init_layers_orthogonal: true
cnn_layers_init_orthogonal: false
algo_hyperparams: &procgen-algo-defaults
gamma: 0.999
gae_lambda: 0.95
n_steps: 256
batch_size: 2048
n_epochs: 3
ent_coef: 0.01
clip_range: 0.2
# clip_range_decay: linear
clip_range_vf: 0.2
learning_rate: !!float 5e-4
# learning_rate_decay: linear
vf_coef: 0.5
eval_hyperparams: &procgen-eval-defaults
ignore_first_episode: true
# deterministic: false
step_freq: !!float 1e5
_procgen-easy: &procgen-easy-defaults
<<: *procgen-defaults
n_timesteps: !!float 25e6
env_hyperparams: &procgen-easy-env-defaults
<<: *procgen-env-defaults
make_kwargs:
<<: *procgen-make-kwargs-defaults
distribution_mode: easy
procgen-coinrun-easy: &coinrun-easy-defaults
<<: *procgen-easy-defaults
env_id: coinrun
debug-procgen-coinrun:
<<: *coinrun-easy-defaults
device: cpu
procgen-starpilot-easy:
<<: *procgen-easy-defaults
env_id: starpilot
procgen-bossfight-easy:
<<: *procgen-easy-defaults
env_id: bossfight
procgen-bigfish-easy:
<<: *procgen-easy-defaults
env_id: bigfish
_procgen-hard: &procgen-hard-defaults
<<: *procgen-defaults
n_timesteps: !!float 200e6
env_hyperparams: &procgen-hard-env-defaults
<<: *procgen-env-defaults
n_envs: 256
make_kwargs:
<<: *procgen-make-kwargs-defaults
distribution_mode: hard
algo_hyperparams: &procgen-hard-algo-defaults
<<: *procgen-algo-defaults
batch_size: 8192
clip_range_decay: linear
learning_rate_decay: linear
eval_hyperparams:
<<: *procgen-eval-defaults
step_freq: !!float 5e5
procgen-starpilot-hard: &procgen-starpilot-hard-defaults
<<: *procgen-hard-defaults
env_id: starpilot
procgen-starpilot-hard-2xIMPALA:
<<: *procgen-starpilot-hard-defaults
policy_hyperparams:
<<: *procgen-policy-defaults
impala_channels: [32, 64, 64]
algo_hyperparams:
<<: *procgen-hard-algo-defaults
learning_rate: !!float 3.3e-4
procgen-starpilot-hard-2xIMPALA-fat:
<<: *procgen-starpilot-hard-defaults
policy_hyperparams:
<<: *procgen-policy-defaults
impala_channels: [32, 64, 64]
cnn_flatten_dim: 512
algo_hyperparams:
<<: *procgen-hard-algo-defaults
learning_rate: !!float 2.5e-4
procgen-starpilot-hard-4xIMPALA:
<<: *procgen-starpilot-hard-defaults
policy_hyperparams:
<<: *procgen-policy-defaults
impala_channels: [64, 128, 128]
algo_hyperparams:
<<: *procgen-hard-algo-defaults
learning_rate: !!float 2.1e-4
|