A2C playing HalfCheetahBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
8edc5d6
from typing import Dict, Optional, Tuple, Type | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from numpy.typing import NDArray | |
from torch.distributions import Distribution, constraints | |
from rl_algo_impls.shared.actor import Actor, PiForward, pi_forward | |
from rl_algo_impls.shared.actor.categorical import MaskedCategorical | |
from rl_algo_impls.shared.encoder import EncoderOutDim | |
from rl_algo_impls.shared.module.utils import mlp | |
class GridnetDistribution(Distribution): | |
def __init__( | |
self, | |
map_size: int, | |
action_vec: NDArray[np.int64], | |
logits: torch.Tensor, | |
masks: torch.Tensor, | |
validate_args: Optional[bool] = None, | |
) -> None: | |
self.map_size = map_size | |
self.action_vec = action_vec | |
masks = masks.view(-1, masks.shape[-1]) | |
split_masks = torch.split(masks, action_vec.tolist(), dim=1) | |
grid_logits = logits.reshape(-1, action_vec.sum()) | |
split_logits = torch.split(grid_logits, action_vec.tolist(), dim=1) | |
self.categoricals = [ | |
MaskedCategorical(logits=lg, validate_args=validate_args, mask=m) | |
for lg, m in zip(split_logits, split_masks) | |
] | |
batch_shape = logits.size()[:-1] if logits.ndimension() > 1 else torch.Size() | |
super().__init__(batch_shape=batch_shape, validate_args=validate_args) | |
def log_prob(self, action: torch.Tensor) -> torch.Tensor: | |
prob_stack = torch.stack( | |
[ | |
c.log_prob(a) | |
for a, c in zip(action.view(-1, action.shape[-1]).T, self.categoricals) | |
], | |
dim=-1, | |
) | |
logprob = prob_stack.view(-1, self.map_size, len(self.action_vec)) | |
return logprob.sum(dim=(1, 2)) | |
def entropy(self) -> torch.Tensor: | |
ent = torch.stack([c.entropy() for c in self.categoricals], dim=-1) | |
ent = ent.view(-1, self.map_size, len(self.action_vec)) | |
return ent.sum(dim=(1, 2)) | |
def sample(self, sample_shape: torch.Size = torch.Size()) -> torch.Tensor: | |
s = torch.stack([c.sample(sample_shape) for c in self.categoricals], dim=-1) | |
return s.view(-1, self.map_size, len(self.action_vec)) | |
def mode(self) -> torch.Tensor: | |
m = torch.stack([c.mode for c in self.categoricals], dim=-1) | |
return m.view(-1, self.map_size, len(self.action_vec)) | |
def arg_constraints(self) -> Dict[str, constraints.Constraint]: | |
# Constraints handled by child distributions in dist | |
return {} | |
class GridnetActorHead(Actor): | |
def __init__( | |
self, | |
map_size: int, | |
action_vec: NDArray[np.int64], | |
in_dim: EncoderOutDim, | |
hidden_sizes: Tuple[int, ...] = (32,), | |
activation: Type[nn.Module] = nn.ReLU, | |
init_layers_orthogonal: bool = True, | |
) -> None: | |
super().__init__() | |
self.map_size = map_size | |
self.action_vec = action_vec | |
assert isinstance(in_dim, int) | |
layer_sizes = (in_dim,) + hidden_sizes + (map_size * action_vec.sum(),) | |
self._fc = mlp( | |
layer_sizes, | |
activation, | |
init_layers_orthogonal=init_layers_orthogonal, | |
final_layer_gain=0.01, | |
) | |
def forward( | |
self, | |
obs: torch.Tensor, | |
actions: Optional[torch.Tensor] = None, | |
action_masks: Optional[torch.Tensor] = None, | |
) -> PiForward: | |
assert ( | |
action_masks is not None | |
), f"No mask case unhandled in {self.__class__.__name__}" | |
logits = self._fc(obs) | |
pi = GridnetDistribution(self.map_size, self.action_vec, logits, action_masks) | |
return pi_forward(pi, actions) | |
def action_shape(self) -> Tuple[int, ...]: | |
return (self.map_size, len(self.action_vec)) | |