A2C playing HalfCheetahBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
8edc5d6
from abc import ABC, abstractmethod | |
from typing import List, Optional, TypeVar | |
import gym | |
import torch | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from rl_algo_impls.shared.callbacks import Callback | |
from rl_algo_impls.shared.policy.policy import Policy | |
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv | |
AlgorithmSelf = TypeVar("AlgorithmSelf", bound="Algorithm") | |
class Algorithm(ABC): | |
def __init__( | |
self, | |
policy: Policy, | |
env: VecEnv, | |
device: torch.device, | |
tb_writer: SummaryWriter, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
self.policy = policy | |
self.env = env | |
self.device = device | |
self.tb_writer = tb_writer | |
def learn( | |
self: AlgorithmSelf, | |
train_timesteps: int, | |
callbacks: Optional[List[Callback]] = None, | |
total_timesteps: Optional[int] = None, | |
start_timesteps: int = 0, | |
) -> AlgorithmSelf: | |
... | |