A2C playing QbertNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/0760ef7d52b17f30219a27c18ba52c8895025ae3
c41aee4
# Support for PyTorch mps mode (https://pytorch.org/docs/stable/notes/mps.html) | |
import os | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
import itertools | |
from argparse import Namespace | |
from multiprocessing import Pool | |
from typing import Any, Dict | |
from runner.running_utils import base_parser | |
from runner.train import train, TrainArgs | |
def args_dict(algo: str, env: str, seed: str, args: Namespace) -> Dict[str, Any]: | |
d = vars(args).copy() | |
d.update( | |
{ | |
"algo": algo, | |
"env": env, | |
"seed": seed, | |
} | |
) | |
return d | |
if __name__ == "__main__": | |
parser = base_parser() | |
parser.add_argument( | |
"--wandb-project-name", | |
type=str, | |
default="rl-algo-impls", | |
help="WandB project namme to upload training data to. If none, won't upload.", | |
) | |
parser.add_argument( | |
"--wandb-entity", | |
type=str, | |
default=None, | |
help="WandB team of project. None uses default entity", | |
) | |
parser.add_argument( | |
"--wandb-tags", type=str, nargs="*", help="WandB tags to add to run" | |
) | |
parser.add_argument( | |
"--pool-size", type=int, default=1, help="Simultaneous training jobs to run" | |
) | |
parser.set_defaults( | |
algo="ppo", | |
env="MountainCarContinuous-v0", | |
seed=[1, 2, 3], | |
pool_size=3, | |
) | |
args = parser.parse_args() | |
print(args) | |
if args.pool_size == 1: | |
from pyvirtualdisplay.display import Display | |
virtual_display = Display(visible=False, size=(1400, 900)) | |
virtual_display.start() | |
# pool_size isn't a TrainArg so must be removed from args | |
pool_size = min(args.pool_size, len(args.seed)) | |
delattr(args, "pool_size") | |
algos = args.algo if isinstance(args.algo, list) else [args.algo] | |
envs = args.env if isinstance(args.env, list) else [args.env] | |
seeds = args.seed if isinstance(args.seed, list) else [args.seed] | |
if all(len(arg) == 1 for arg in [algos, envs, seeds]): | |
train(TrainArgs(**args_dict(algos[0], envs[0], seeds[0], args))) | |
else: | |
# Force a new process for each job to get around wandb not allowing more than one | |
# wandb.tensorboard.patch call per process. | |
with Pool(pool_size, maxtasksperchild=1) as p: | |
train_args = [ | |
TrainArgs(**args_dict(algo, env, seed, args)) | |
for algo, env, seed in itertools.product(algos, envs, seeds) | |
] | |
p.map(train, train_args) | |