File size: 16,064 Bytes
b18ddcc
 
 
 
3cc5c1d
 
 
 
b18ddcc
 
 
 
 
 
 
 
3cc5c1d
b18ddcc
 
 
3cc5c1d
b18ddcc
 
 
3cc5c1d
 
 
 
 
 
 
b18ddcc
 
 
 
 
 
3cc5c1d
b18ddcc
3cc5c1d
 
 
b18ddcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e1c086
3cc5c1d
 
 
 
b18ddcc
 
 
 
 
3cc5c1d
b18ddcc
3cc5c1d
b18ddcc
 
 
 
 
 
3cc5c1d
b18ddcc
3cc5c1d
 
 
 
 
 
b18ddcc
3cc5c1d
b18ddcc
3cc5c1d
 
 
b18ddcc
 
 
 
 
 
 
 
 
 
 
 
3cc5c1d
 
b18ddcc
 
 
 
 
 
 
3cc5c1d
 
 
b18ddcc
 
3cc5c1d
b18ddcc
 
3cc5c1d
b18ddcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e1c086
b18ddcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e1c086
3cc5c1d
 
 
 
b18ddcc
 
 
 
 
 
 
 
 
 
3cc5c1d
b18ddcc
 
 
 
 
 
 
 
3cc5c1d
 
 
 
 
 
 
 
 
 
 
 
b18ddcc
 
 
3cc5c1d
b18ddcc
 
 
 
 
 
 
 
 
 
3cc5c1d
b18ddcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cc5c1d
b18ddcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e1c086
b18ddcc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import dataclasses
import gc
import inspect
import logging
import os
from dataclasses import asdict, dataclass
from typing import Callable, List, NamedTuple, Optional, Sequence, Union

import numpy as np
import optuna
import torch
from optuna.pruners import HyperbandPruner
from optuna.samplers import TPESampler
from optuna.visualization import plot_optimization_history, plot_param_importances
from torch.utils.tensorboard.writer import SummaryWriter

import wandb
from rl_algo_impls.a2c.optimize import sample_params as a2c_sample_params
from rl_algo_impls.runner.config import Config, EnvHyperparams, RunArgs
from rl_algo_impls.runner.running_utils import (
    ALGOS,
    base_parser,
    get_device,
    hparam_dict,
    load_hyperparams,
    make_policy,
    set_seeds,
)
from rl_algo_impls.shared.callbacks import Callback
from rl_algo_impls.shared.callbacks.microrts_reward_decay_callback import (
    MicrortsRewardDecayCallback,
)
from rl_algo_impls.shared.callbacks.optimize_callback import (
    Evaluation,
    OptimizeCallback,
    evaluation,
)
from rl_algo_impls.shared.callbacks.self_play_callback import SelfPlayCallback
from rl_algo_impls.shared.stats import EpisodesStats
from rl_algo_impls.shared.vec_env import make_env, make_eval_env
from rl_algo_impls.wrappers.self_play_wrapper import SelfPlayWrapper
from rl_algo_impls.wrappers.vectorable_wrapper import find_wrapper


@dataclass
class StudyArgs:
    load_study: bool
    study_name: Optional[str] = None
    storage_path: Optional[str] = None
    n_trials: int = 100
    n_jobs: int = 1
    n_evaluations: int = 4
    n_eval_envs: int = 8
    n_eval_episodes: int = 16
    timeout: Union[int, float, None] = None
    wandb_project_name: Optional[str] = None
    wandb_entity: Optional[str] = None
    wandb_tags: Sequence[str] = dataclasses.field(default_factory=list)
    wandb_group: Optional[str] = None
    virtual_display: bool = False


class Args(NamedTuple):
    train_args: Sequence[RunArgs]
    study_args: StudyArgs


def parse_args() -> Args:
    parser = base_parser()
    parser.add_argument(
        "--load-study",
        action="store_true",
        help="Load a preexisting study, useful for parallelization",
    )
    parser.add_argument("--study-name", type=str, help="Optuna study name")
    parser.add_argument(
        "--storage-path",
        type=str,
        help="Path of database for Optuna to persist to",
    )
    parser.add_argument(
        "--wandb-project-name",
        type=str,
        default="rl-algo-impls-tuning",
        help="WandB project name to upload tuning data to. If none, won't upload",
    )
    parser.add_argument(
        "--wandb-entity",
        type=str,
        help="WandB team. None uses the default entity",
    )
    parser.add_argument(
        "--wandb-tags", type=str, nargs="*", help="WandB tags to add to run"
    )
    parser.add_argument(
        "--wandb-group", type=str, help="WandB group to group trials under"
    )
    parser.add_argument(
        "--n-trials", type=int, default=100, help="Maximum number of trials"
    )
    parser.add_argument(
        "--n-jobs", type=int, default=1, help="Number of jobs to run in parallel"
    )
    parser.add_argument(
        "--n-evaluations",
        type=int,
        default=4,
        help="Number of evaluations during the training",
    )
    parser.add_argument(
        "--n-eval-envs",
        type=int,
        default=8,
        help="Number of envs in vectorized eval environment",
    )
    parser.add_argument(
        "--n-eval-episodes",
        type=int,
        default=16,
        help="Number of episodes to complete for evaluation",
    )
    parser.add_argument("--timeout", type=int, help="Seconds to timeout optimization")
    parser.add_argument(
        "--virtual-display", action="store_true", help="Use headless virtual display"
    )
    # parser.set_defaults(
    #     algo=["a2c"],
    #     env=["CartPole-v1"],
    #     seed=[100, 200, 300],
    #     n_trials=5,
    #     virtual_display=True,
    # )
    train_dict, study_dict = {}, {}
    for k, v in vars(parser.parse_args()).items():
        if k in inspect.signature(StudyArgs).parameters:
            study_dict[k] = v
        else:
            train_dict[k] = v

    study_args = StudyArgs(**study_dict)
    # Hyperparameter tuning across algos and envs not supported
    assert len(train_dict["algo"]) == 1
    assert len(train_dict["env"]) == 1
    train_args = RunArgs.expand_from_dict(train_dict)

    if not all((study_args.study_name, study_args.storage_path)):
        hyperparams = load_hyperparams(train_args[0].algo, train_args[0].env)
        config = Config(train_args[0], hyperparams, os.getcwd())
        if study_args.study_name is None:
            study_args.study_name = config.run_name(include_seed=False)
        if study_args.storage_path is None:
            study_args.storage_path = (
                f"sqlite:///{os.path.join(config.runs_dir, 'tuning.db')}"
            )
    # Default set group name to study name
    study_args.wandb_group = study_args.wandb_group or study_args.study_name

    return Args(train_args, study_args)


def objective_fn(
    args: Sequence[RunArgs], study_args: StudyArgs
) -> Callable[[optuna.Trial], float]:
    def objective(trial: optuna.Trial) -> float:
        if len(args) == 1:
            return simple_optimize(trial, args[0], study_args)
        else:
            return stepwise_optimize(trial, args, study_args)

    return objective


def simple_optimize(trial: optuna.Trial, args: RunArgs, study_args: StudyArgs) -> float:
    base_hyperparams = load_hyperparams(args.algo, args.env)
    base_config = Config(args, base_hyperparams, os.getcwd())
    if args.algo == "a2c":
        hyperparams = a2c_sample_params(trial, base_hyperparams, base_config)
    else:
        raise ValueError(f"Optimizing {args.algo} isn't supported")
    config = Config(args, hyperparams, os.getcwd())

    wandb_enabled = bool(study_args.wandb_project_name)
    if wandb_enabled:
        wandb.init(
            project=study_args.wandb_project_name,
            entity=study_args.wandb_entity,
            config=asdict(hyperparams),
            name=f"{config.model_name()}-{str(trial.number)}",
            tags=study_args.wandb_tags,
            group=study_args.wandb_group,
            sync_tensorboard=True,
            monitor_gym=True,
            save_code=True,
            reinit=True,
        )
        wandb.config.update(args)

    tb_writer = SummaryWriter(config.tensorboard_summary_path)
    set_seeds(args.seed, args.use_deterministic_algorithms)

    env = make_env(
        config, EnvHyperparams(**config.env_hyperparams), tb_writer=tb_writer
    )
    device = get_device(config, env)
    policy_factory = lambda: make_policy(
        args.algo, env, device, **config.policy_hyperparams
    )
    policy = policy_factory()
    algo = ALGOS[args.algo](policy, env, device, tb_writer, **config.algo_hyperparams)

    eval_env = make_eval_env(
        config,
        EnvHyperparams(**config.env_hyperparams),
        override_hparams={"n_envs": study_args.n_eval_envs},
    )
    optimize_callback = OptimizeCallback(
        policy,
        eval_env,
        trial,
        tb_writer,
        step_freq=config.n_timesteps // study_args.n_evaluations,
        n_episodes=study_args.n_eval_episodes,
        deterministic=config.eval_hyperparams.get("deterministic", True),
    )
    callbacks: List[Callback] = [optimize_callback]
    if config.hyperparams.microrts_reward_decay_callback:
        callbacks.append(MicrortsRewardDecayCallback(config, env))
    selfPlayWrapper = find_wrapper(env, SelfPlayWrapper)
    if selfPlayWrapper:
        callbacks.append(SelfPlayCallback(policy, policy_factory, selfPlayWrapper))
    try:
        algo.learn(config.n_timesteps, callbacks=callbacks)

        if not optimize_callback.is_pruned:
            optimize_callback.evaluate()
            if not optimize_callback.is_pruned:
                policy.save(config.model_dir_path(best=False))

        eval_stat: EpisodesStats = callback.last_eval_stat  # type: ignore
        train_stat: EpisodesStats = callback.last_train_stat  # type: ignore

        tb_writer.add_hparams(
            hparam_dict(hyperparams, vars(args)),
            {
                "hparam/last_mean": eval_stat.score.mean,
                "hparam/last_result": eval_stat.score.mean - eval_stat.score.std,
                "hparam/train_mean": train_stat.score.mean,
                "hparam/train_result": train_stat.score.mean - train_stat.score.std,
                "hparam/score": optimize_callback.last_score,
                "hparam/is_pruned": optimize_callback.is_pruned,
            },
            None,
            config.run_name(),
        )
        tb_writer.close()

        if wandb_enabled:
            wandb.run.summary["state"] = (  # type: ignore
                "Pruned" if optimize_callback.is_pruned else "Complete"
            )
            wandb.finish(quiet=True)

        if optimize_callback.is_pruned:
            raise optuna.exceptions.TrialPruned()

        return optimize_callback.last_score
    except AssertionError as e:
        logging.warning(e)
        return np.nan
    finally:
        env.close()
        eval_env.close()
        gc.collect()
        torch.cuda.empty_cache()


def stepwise_optimize(
    trial: optuna.Trial, args: Sequence[RunArgs], study_args: StudyArgs
) -> float:
    algo = args[0].algo
    env_id = args[0].env
    base_hyperparams = load_hyperparams(algo, env_id)
    base_config = Config(args[0], base_hyperparams, os.getcwd())
    if algo == "a2c":
        hyperparams = a2c_sample_params(trial, base_hyperparams, base_config)
    else:
        raise ValueError(f"Optimizing {algo} isn't supported")

    wandb_enabled = bool(study_args.wandb_project_name)
    if wandb_enabled:
        wandb.init(
            project=study_args.wandb_project_name,
            entity=study_args.wandb_entity,
            config=asdict(hyperparams),
            name=f"{str(trial.number)}-S{base_config.seed()}",
            tags=study_args.wandb_tags,
            group=study_args.wandb_group,
            save_code=True,
            reinit=True,
        )

    score = -np.inf

    for i in range(study_args.n_evaluations):
        evaluations: List[Evaluation] = []

        for arg in args:
            config = Config(arg, hyperparams, os.getcwd())

            tb_writer = SummaryWriter(config.tensorboard_summary_path)
            set_seeds(arg.seed, arg.use_deterministic_algorithms)

            env = make_env(
                config,
                EnvHyperparams(**config.env_hyperparams),
                normalize_load_path=config.model_dir_path() if i > 0 else None,
                tb_writer=tb_writer,
            )
            device = get_device(config, env)
            policy_factory = lambda: make_policy(
                arg.algo, env, device, **config.policy_hyperparams
            )
            policy = policy_factory()
            if i > 0:
                policy.load(config.model_dir_path())
            algo = ALGOS[arg.algo](
                policy, env, device, tb_writer, **config.algo_hyperparams
            )

            eval_env = make_eval_env(
                config,
                EnvHyperparams(**config.env_hyperparams),
                normalize_load_path=config.model_dir_path() if i > 0 else None,
                override_hparams={"n_envs": study_args.n_eval_envs},
            )

            start_timesteps = int(i * config.n_timesteps / study_args.n_evaluations)
            train_timesteps = (
                int((i + 1) * config.n_timesteps / study_args.n_evaluations)
                - start_timesteps
            )

            callbacks = []
            if config.hyperparams.microrts_reward_decay_callback:
                callbacks.append(
                    MicrortsRewardDecayCallback(
                        config, env, start_timesteps=start_timesteps
                    )
                )
            selfPlayWrapper = find_wrapper(env, SelfPlayWrapper)
            if selfPlayWrapper:
                callbacks.append(
                    SelfPlayCallback(policy, policy_factory, selfPlayWrapper)
                )
            try:
                algo.learn(
                    train_timesteps,
                    callbacks=callbacks,
                    total_timesteps=config.n_timesteps,
                    start_timesteps=start_timesteps,
                )

                evaluations.append(
                    evaluation(
                        policy,
                        eval_env,
                        tb_writer,
                        study_args.n_eval_episodes,
                        config.eval_hyperparams.get("deterministic", True),
                        start_timesteps + train_timesteps,
                    )
                )

                policy.save(config.model_dir_path())

                tb_writer.close()

            except AssertionError as e:
                logging.warning(e)
                if wandb_enabled:
                    wandb_finish("Error")
                return np.nan
            finally:
                env.close()
                eval_env.close()
                gc.collect()
                torch.cuda.empty_cache()

        d = {}
        for idx, e in enumerate(evaluations):
            d[f"{idx}/eval_mean"] = e.eval_stat.score.mean
            d[f"{idx}/train_mean"] = e.train_stat.score.mean
            d[f"{idx}/score"] = e.score
        d["eval"] = np.mean([e.eval_stat.score.mean for e in evaluations]).item()
        d["train"] = np.mean([e.train_stat.score.mean for e in evaluations]).item()
        score = np.mean([e.score for e in evaluations]).item()
        d["score"] = score

        step = i + 1
        wandb.log(d, step=step)

        print(f"Trial #{trial.number} Step {step} Score: {round(score, 2)}")
        trial.report(score, step)
        if trial.should_prune():
            if wandb_enabled:
                wandb_finish("Pruned")
            raise optuna.exceptions.TrialPruned()

    if wandb_enabled:
        wandb_finish("Complete")
    return score


def wandb_finish(state: str) -> None:
    wandb.run.summary["state"] = state  # type: ignore
    wandb.finish(quiet=True)


def optimize() -> None:
    from pyvirtualdisplay.display import Display

    train_args, study_args = parse_args()
    if study_args.virtual_display:
        virtual_display = Display(visible=False, size=(1400, 900))
        virtual_display.start()

    sampler = TPESampler(**TPESampler.hyperopt_parameters())
    pruner = HyperbandPruner()
    if study_args.load_study:
        assert study_args.study_name
        assert study_args.storage_path
        study = optuna.load_study(
            study_name=study_args.study_name,
            storage=study_args.storage_path,
            sampler=sampler,
            pruner=pruner,
        )
    else:
        study = optuna.create_study(
            study_name=study_args.study_name,
            storage=study_args.storage_path,
            sampler=sampler,
            pruner=pruner,
            direction="maximize",
        )

    try:
        study.optimize(
            objective_fn(train_args, study_args),
            n_trials=study_args.n_trials,
            n_jobs=study_args.n_jobs,
            timeout=study_args.timeout,
        )
    except KeyboardInterrupt:
        pass

    best = study.best_trial
    print(f"Best Trial Value: {best.value}")
    print("Attributes:")
    for key, value in list(best.params.items()) + list(best.user_attrs.items()):
        print(f"  {key}: {value}")

    df = study.trials_dataframe()
    df = df[df.state == "COMPLETE"].sort_values(by=["value"], ascending=False)
    print(df.to_markdown(index=False))

    fig1 = plot_optimization_history(study)
    fig1.write_image("opt_history.png")

    fig2 = plot_param_importances(study)
    fig2.write_image("param_importances.png")


if __name__ == "__main__":
    optimize()