File size: 3,362 Bytes
b18ddcc 3cc5c1d b18ddcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import numpy as np
import optuna
from time import perf_counter
from torch.utils.tensorboard.writer import SummaryWriter
from typing import NamedTuple, Union
from rl_algo_impls.shared.callbacks import Callback
from rl_algo_impls.shared.callbacks.eval_callback import evaluate
from rl_algo_impls.shared.policy.policy import Policy
from rl_algo_impls.shared.stats import EpisodesStats
from rl_algo_impls.wrappers.episode_stats_writer import EpisodeStatsWriter
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv, find_wrapper
class Evaluation(NamedTuple):
eval_stat: EpisodesStats
train_stat: EpisodesStats
score: float
class OptimizeCallback(Callback):
def __init__(
self,
policy: Policy,
env: VecEnv,
trial: optuna.Trial,
tb_writer: SummaryWriter,
step_freq: Union[int, float] = 50_000,
n_episodes: int = 10,
deterministic: bool = True,
) -> None:
super().__init__()
self.policy = policy
self.env = env
self.trial = trial
self.tb_writer = tb_writer
self.step_freq = step_freq
self.n_episodes = n_episodes
self.deterministic = deterministic
stats_writer = find_wrapper(policy.env, EpisodeStatsWriter)
assert stats_writer
self.stats_writer = stats_writer
self.eval_step = 1
self.is_pruned = False
self.last_eval_stat = None
self.last_train_stat = None
self.last_score = -np.inf
def on_step(self, timesteps_elapsed: int = 1) -> bool:
super().on_step(timesteps_elapsed)
if self.timesteps_elapsed >= self.eval_step * self.step_freq:
self.evaluate()
return not self.is_pruned
return True
def evaluate(self) -> None:
self.last_eval_stat, self.last_train_stat, score = evaluation(
self.policy,
self.env,
self.tb_writer,
self.n_episodes,
self.deterministic,
self.timesteps_elapsed,
)
self.last_score = score
self.trial.report(score, self.eval_step)
if self.trial.should_prune():
self.is_pruned = True
self.eval_step += 1
def evaluation(
policy: Policy,
env: VecEnv,
tb_writer: SummaryWriter,
n_episodes: int,
deterministic: bool,
timesteps_elapsed: int,
) -> Evaluation:
start_time = perf_counter()
eval_stat = evaluate(
env,
policy,
n_episodes,
deterministic=deterministic,
print_returns=False,
)
end_time = perf_counter()
tb_writer.add_scalar(
"eval/steps_per_second",
eval_stat.length.sum() / (end_time - start_time),
timesteps_elapsed,
)
policy.train()
print(f"Eval Timesteps: {timesteps_elapsed} | {eval_stat}")
eval_stat.write_to_tensorboard(tb_writer, "eval", timesteps_elapsed)
stats_writer = find_wrapper(policy.env, EpisodeStatsWriter)
assert stats_writer
train_stat = EpisodesStats(stats_writer.episodes)
print(f" Train Stat: {train_stat}")
score = (eval_stat.score.mean + train_stat.score.mean) / 2
print(f" Score: {round(score, 2)}")
tb_writer.add_scalar(
"eval/score",
score,
timesteps_elapsed,
)
return Evaluation(eval_stat, train_stat, score)
|