PPO playing procgen-coinrun-easy from https://github.com/sgoodfriend/rl-algo-impls/tree/21ee1ab96a186676e5ed2f8c3185902f7c7bca7a
a9b202e
import argparse | |
import itertools | |
import numpy as np | |
import pandas as pd | |
import wandb | |
import wandb.apis.public | |
from collections import defaultdict | |
from dataclasses import dataclass | |
from typing import Dict, Iterable, List, TypeVar | |
from benchmark_publish import RunGroup | |
class Comparison: | |
control_values: List[float] | |
experiment_values: List[float] | |
def mean_diff_percentage(self) -> float: | |
return self._diff_percentage( | |
np.mean(self.control_values).item(), np.mean(self.experiment_values).item() | |
) | |
def median_diff_percentage(self) -> float: | |
return self._diff_percentage( | |
np.median(self.control_values).item(), | |
np.median(self.experiment_values).item(), | |
) | |
def _diff_percentage(self, c: float, e: float) -> float: | |
if c == e: | |
return 0 | |
elif c == 0: | |
return float("inf") if e > 0 else float("-inf") | |
return 100 * (e - c) / c | |
def score(self) -> float: | |
return ( | |
np.sum( | |
np.sign((self.mean_diff_percentage(), self.median_diff_percentage())) | |
).item() | |
/ 2 | |
) | |
RunGroupRunsSelf = TypeVar("RunGroupRunsSelf", bound="RunGroupRuns") | |
class RunGroupRuns: | |
def __init__( | |
self, | |
run_group: RunGroup, | |
control: List[str], | |
experiment: List[str], | |
summary_stats: List[str] = ["best_eval", "eval", "train_rolling"], | |
summary_metrics: List[str] = ["mean", "result"], | |
) -> None: | |
self.algo = run_group.algo | |
self.env = run_group.env_id | |
self.control = set(control) | |
self.experiment = set(experiment) | |
self.summary_stats = summary_stats | |
self.summary_metrics = summary_metrics | |
self.control_runs = [] | |
self.experiment_runs = [] | |
def add_run(self, run: wandb.apis.public.Run) -> None: | |
wandb_tags = set(run.config.get("wandb_tags", [])) | |
if self.control & wandb_tags: | |
self.control_runs.append(run) | |
elif self.experiment & wandb_tags: | |
self.experiment_runs.append(run) | |
def comparisons_by_metric(self) -> Dict[str, Comparison]: | |
c_by_m = {} | |
for metric in ( | |
f"{s}_{m}" | |
for s, m in itertools.product(self.summary_stats, self.summary_metrics) | |
): | |
c_by_m[metric] = Comparison( | |
[c.summary[metric] for c in self.control_runs], | |
[e.summary[metric] for e in self.experiment_runs], | |
) | |
return c_by_m | |
def data_frame(rows: Iterable[RunGroupRunsSelf]) -> pd.DataFrame: | |
results = defaultdict(list) | |
for r in rows: | |
if not r.control_runs or not r.experiment_runs: | |
continue | |
results["algo"].append(r.algo) | |
results["env"].append(r.env) | |
results["control"].append(r.control) | |
results["expierment"].append(r.experiment) | |
c_by_m = r.comparisons_by_metric() | |
results["score"].append( | |
sum(m.score() for m in c_by_m.values()) / len(c_by_m) | |
) | |
for m, c in c_by_m.items(): | |
results[f"{m}_mean"].append(c.mean_diff_percentage()) | |
results[f"{m}_median"].append(c.median_diff_percentage()) | |
return pd.DataFrame(results) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-p", | |
"--wandb-project-name", | |
type=str, | |
default="rl-algo-impls-benchmarks", | |
help="WandB project name to load runs from", | |
) | |
parser.add_argument( | |
"--wandb-entity", | |
type=str, | |
default=None, | |
help="WandB team. None uses default entity", | |
) | |
parser.add_argument( | |
"-n", | |
"--wandb-hostname-tag", | |
type=str, | |
nargs="*", | |
help="WandB tags for hostname (i.e. host_192-9-145-26)", | |
) | |
parser.add_argument( | |
"-c", | |
"--wandb-control-tag", | |
type=str, | |
nargs="+", | |
help="WandB tag for control commit (i.e. benchmark_5598ebc)", | |
) | |
parser.add_argument( | |
"-e", | |
"--wandb-experiment-tag", | |
type=str, | |
nargs="+", | |
help="WandB tag for experiment commit (i.e. benchmark_5540e1f)", | |
) | |
parser.add_argument( | |
"--exclude_envs", | |
type=str, | |
nargs="*", | |
help="Environments to exclude from comparison", | |
) | |
# parser.set_defaults( | |
# wandb_hostname_tag=["host_192-9-145-26"], | |
# wandb_control_tag=["benchmark_e4d1ed6", "benchmark_5598ebc"], | |
# wandb_experiment_tag=["benchmark_680043d", "benchmark_5540e1f"], | |
# exclude_envs=["CarRacing-v0"], | |
# ) | |
args = parser.parse_args() | |
print(args) | |
api = wandb.Api() | |
all_runs = api.runs( | |
path=f"{args.wandb_entity or api.default_entity}/{args.wandb_project_name}", | |
order="+created_at", | |
) | |
runs_by_run_group: Dict[RunGroup, RunGroupRuns] = {} | |
wandb_hostname_tags = set(args.wandb_hostname_tag) | |
for r in all_runs: | |
wandb_tags = set(r.config.get("wandb_tags", [])) | |
if not wandb_tags or not wandb_hostname_tags & wandb_tags: | |
continue | |
rg = RunGroup(r.config["algo"], r.config["env"]) | |
if args.exclude_envs and rg.env_id in args.exclude_envs: | |
continue | |
if rg not in runs_by_run_group: | |
runs_by_run_group[rg] = RunGroupRuns( | |
rg, args.wandb_control_tag, args.wandb_experiment_tag | |
) | |
runs_by_run_group[rg].add_run(r) | |
df = RunGroupRuns.data_frame(runs_by_run_group.values()).round(decimals=2) | |
print(f"**Total Score: {sum(df.score)}**") | |
df.loc["mean"] = df.mean(numeric_only=True) | |
print(df.to_markdown()) | |