File size: 4,712 Bytes
0e936e1
 
8bf4dee
 
 
 
0e936e1
 
8bf4dee
 
 
0e936e1
8bf4dee
 
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
 
 
 
 
 
0e936e1
 
 
 
 
 
 
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
 
0e936e1
 
8bf4dee
 
 
 
 
 
 
 
 
0e936e1
8bf4dee
 
 
0e936e1
 
8bf4dee
 
 
 
 
 
 
 
 
 
 
0e936e1
 
 
 
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
0e936e1
 
 
 
 
 
 
 
 
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
0e936e1
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from typing import Optional, Sequence, Tuple

import numpy as np
import torch
import torch.nn as nn

from rl_algo_impls.shared.actor import Actor, PiForward, actor_head
from rl_algo_impls.shared.encoder import Encoder
from rl_algo_impls.shared.policy.critic import CriticHead
from rl_algo_impls.shared.policy.on_policy import (
    OnPolicy,
    Step,
    clamp_actions,
    default_hidden_sizes,
)
from rl_algo_impls.shared.policy.policy import ACTIVATION
from rl_algo_impls.wrappers.vectorable_wrapper import (
    VecEnv,
    VecEnvObs,
    single_action_space,
    single_observation_space,
)

PI_FILE_NAME = "pi.pt"
V_FILE_NAME = "v.pt"


class VPGActor(Actor):
    def __init__(self, feature_extractor: Encoder, head: Actor) -> None:
        super().__init__()
        self.feature_extractor = feature_extractor
        self.head = head

    def forward(self, obs: torch.Tensor, a: Optional[torch.Tensor] = None) -> PiForward:
        fe = self.feature_extractor(obs)
        return self.head(fe, a)

    def sample_weights(self, batch_size: int = 1) -> None:
        self.head.sample_weights(batch_size=batch_size)

    @property
    def action_shape(self) -> Tuple[int, ...]:
        return self.head.action_shape


class VPGActorCritic(OnPolicy):
    def __init__(
        self,
        env: VecEnv,
        hidden_sizes: Optional[Sequence[int]] = None,
        init_layers_orthogonal: bool = True,
        activation_fn: str = "tanh",
        log_std_init: float = -0.5,
        use_sde: bool = False,
        full_std: bool = True,
        squash_output: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(env, **kwargs)
        activation = ACTIVATION[activation_fn]
        obs_space = single_observation_space(env)
        self.action_space = single_action_space(env)
        self.use_sde = use_sde
        self.squash_output = squash_output

        hidden_sizes = (
            hidden_sizes
            if hidden_sizes is not None
            else default_hidden_sizes(obs_space)
        )

        pi_feature_extractor = Encoder(
            obs_space, activation, init_layers_orthogonal=init_layers_orthogonal
        )
        pi_head = actor_head(
            self.action_space,
            pi_feature_extractor.out_dim,
            tuple(hidden_sizes),
            init_layers_orthogonal,
            activation,
            log_std_init=log_std_init,
            use_sde=use_sde,
            full_std=full_std,
            squash_output=squash_output,
        )
        self.pi = VPGActor(pi_feature_extractor, pi_head)

        v_feature_extractor = Encoder(
            obs_space, activation, init_layers_orthogonal=init_layers_orthogonal
        )
        v_head = CriticHead(
            v_feature_extractor.out_dim,
            tuple(hidden_sizes),
            activation=activation,
            init_layers_orthogonal=init_layers_orthogonal,
        )
        self.v = nn.Sequential(v_feature_extractor, v_head)

    def value(self, obs: VecEnvObs) -> np.ndarray:
        o = self._as_tensor(obs)
        with torch.no_grad():
            v = self.v(o)
        return v.cpu().numpy()

    def step(self, obs: VecEnvObs, action_masks: Optional[np.ndarray] = None) -> Step:
        assert (
            action_masks is None
        ), f"action_masks not currently supported in {self.__class__.__name__}"
        o = self._as_tensor(obs)
        with torch.no_grad():
            pi, _, _ = self.pi(o)
            a = pi.sample()
            logp_a = pi.log_prob(a)

            v = self.v(o)

        a_np = a.cpu().numpy()
        clamped_a_np = clamp_actions(a_np, self.action_space, self.squash_output)
        return Step(a_np, v.cpu().numpy(), logp_a.cpu().numpy(), clamped_a_np)

    def act(
        self,
        obs: np.ndarray,
        deterministic: bool = True,
        action_masks: Optional[np.ndarray] = None,
    ) -> np.ndarray:
        assert (
            action_masks is None
        ), f"action_masks not currently supported in {self.__class__.__name__}"
        if not deterministic:
            return self.step(obs).clamped_a
        else:
            o = self._as_tensor(obs)
            with torch.no_grad():
                pi, _, _ = self.pi(o)
                a = pi.mode
            return clamp_actions(a.cpu().numpy(), self.action_space, self.squash_output)

    def load(self, path: str) -> None:
        super().load(path)
        self.reset_noise()

    def reset_noise(self, batch_size: Optional[int] = None) -> None:
        self.pi.sample_weights(
            batch_size=batch_size if batch_size else self.env.num_envs
        )

    @property
    def action_shape(self) -> Tuple[int, ...]:
        return self.pi.action_shape