File size: 5,838 Bytes
8bf4dee 0e936e1 8bf4dee 0e936e1 8bf4dee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import numpy as np
import torch
import torch.nn as nn
from collections import defaultdict
from dataclasses import dataclass, asdict
from torch.optim import Adam
from torch.utils.tensorboard.writer import SummaryWriter
from typing import Optional, Sequence, TypeVar
from rl_algo_impls.shared.algorithm import Algorithm
from rl_algo_impls.shared.callbacks.callback import Callback
from rl_algo_impls.shared.gae import compute_rtg_and_advantage_from_trajectories
from rl_algo_impls.shared.trajectory import Trajectory, TrajectoryAccumulator
from rl_algo_impls.vpg.policy import VPGActorCritic
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv
@dataclass
class TrainEpochStats:
pi_loss: float
entropy_loss: float
v_loss: float
envs_with_done: int = 0
episodes_done: int = 0
def write_to_tensorboard(self, tb_writer: SummaryWriter, global_step: int) -> None:
for name, value in asdict(self).items():
tb_writer.add_scalar(f"losses/{name}", value, global_step=global_step)
class VPGTrajectoryAccumulator(TrajectoryAccumulator):
def __init__(self, num_envs: int) -> None:
super().__init__(num_envs, trajectory_class=Trajectory)
self.completed_per_env: defaultdict[int, int] = defaultdict(int)
def on_done(self, env_idx: int, trajectory: Trajectory) -> None:
self.completed_per_env[env_idx] += 1
VanillaPolicyGradientSelf = TypeVar(
"VanillaPolicyGradientSelf", bound="VanillaPolicyGradient"
)
class VanillaPolicyGradient(Algorithm):
def __init__(
self,
policy: VPGActorCritic,
env: VecEnv,
device: torch.device,
tb_writer: SummaryWriter,
gamma: float = 0.99,
pi_lr: float = 3e-4,
val_lr: float = 1e-3,
train_v_iters: int = 80,
gae_lambda: float = 0.97,
max_grad_norm: float = 10.0,
n_steps: int = 4_000,
sde_sample_freq: int = -1,
ent_coef: float = 0.0,
) -> None:
super().__init__(policy, env, device, tb_writer)
self.policy = policy
self.gamma = gamma
self.gae_lambda = gae_lambda
self.pi_optim = Adam(self.policy.pi.parameters(), lr=pi_lr)
self.val_optim = Adam(self.policy.v.parameters(), lr=val_lr)
self.max_grad_norm = max_grad_norm
self.n_steps = n_steps
self.train_v_iters = train_v_iters
self.sde_sample_freq = sde_sample_freq
self.ent_coef = ent_coef
def learn(
self: VanillaPolicyGradientSelf,
total_timesteps: int,
callback: Optional[Callback] = None,
) -> VanillaPolicyGradientSelf:
timesteps_elapsed = 0
epoch_cnt = 0
while timesteps_elapsed < total_timesteps:
epoch_cnt += 1
accumulator = self._collect_trajectories()
epoch_stats = self.train(accumulator.all_trajectories)
epoch_stats.envs_with_done = len(accumulator.completed_per_env)
epoch_stats.episodes_done = sum(accumulator.completed_per_env.values())
epoch_steps = accumulator.n_timesteps()
timesteps_elapsed += epoch_steps
epoch_stats.write_to_tensorboard(
self.tb_writer, global_step=timesteps_elapsed
)
print(
" | ".join(
[
f"Epoch: {epoch_cnt}",
f"Pi Loss: {round(epoch_stats.pi_loss, 2)}",
f"Epoch Loss: {round(epoch_stats.entropy_loss, 2)}",
f"V Loss: {round(epoch_stats.v_loss, 2)}",
f"Total Steps: {timesteps_elapsed}",
]
)
)
if callback:
callback.on_step(timesteps_elapsed=epoch_steps)
return self
def train(self, trajectories: Sequence[Trajectory]) -> TrainEpochStats:
self.policy.train()
obs = torch.as_tensor(
np.concatenate([np.array(t.obs) for t in trajectories]), device=self.device
)
act = torch.as_tensor(
np.concatenate([np.array(t.act) for t in trajectories]), device=self.device
)
rtg, adv = compute_rtg_and_advantage_from_trajectories(
trajectories, self.policy, self.gamma, self.gae_lambda, self.device
)
_, logp, entropy = self.policy.pi(obs, act)
pi_loss = -(logp * adv).mean()
entropy_loss = entropy.mean()
actor_loss = pi_loss - self.ent_coef * entropy_loss
self.pi_optim.zero_grad()
actor_loss.backward()
nn.utils.clip_grad_norm_(self.policy.pi.parameters(), self.max_grad_norm)
self.pi_optim.step()
v_loss = 0
for _ in range(self.train_v_iters):
v = self.policy.v(obs)
v_loss = ((v - rtg) ** 2).mean()
self.val_optim.zero_grad()
v_loss.backward()
nn.utils.clip_grad_norm_(self.policy.v.parameters(), self.max_grad_norm)
self.val_optim.step()
return TrainEpochStats(
pi_loss.item(),
entropy_loss.item(),
v_loss.item(), # type: ignore
)
def _collect_trajectories(self) -> VPGTrajectoryAccumulator:
self.policy.eval()
obs = self.env.reset()
accumulator = VPGTrajectoryAccumulator(self.env.num_envs)
self.policy.reset_noise()
for i in range(self.n_steps):
if self.sde_sample_freq > 0 and i > 0 and i % self.sde_sample_freq == 0:
self.policy.reset_noise()
action, value, _, clamped_action = self.policy.step(obs)
next_obs, reward, done, _ = self.env.step(clamped_action)
accumulator.step(obs, action, next_obs, reward, done, value)
obs = next_obs
return accumulator
|