File size: 1,254 Bytes
5d5d65a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gym
import torch as th
import torch.nn as nn
from gym.spaces import Discrete
from typing import Optional, Sequence, Type
from shared.module.feature_extractor import FeatureExtractor
from shared.module.module import mlp
class QNetwork(nn.Module):
def __init__(
self,
observation_space: gym.Space,
action_space: gym.Space,
hidden_sizes: Sequence[int] = [],
activation: Type[nn.Module] = nn.ReLU, # Used by stable-baselines3
cnn_feature_dim: int = 512,
cnn_style: str = "nature",
cnn_layers_init_orthogonal: Optional[bool] = None,
) -> None:
super().__init__()
assert isinstance(action_space, Discrete)
self._feature_extractor = FeatureExtractor(
observation_space,
activation,
cnn_feature_dim=cnn_feature_dim,
cnn_style=cnn_style,
cnn_layers_init_orthogonal=cnn_layers_init_orthogonal,
)
layer_sizes = (
(self._feature_extractor.out_dim,) + tuple(hidden_sizes) + (action_space.n,)
)
self._fc = mlp(layer_sizes, activation)
def forward(self, obs: th.Tensor) -> th.Tensor:
x = self._feature_extractor(obs)
return self._fc(x)
|