File size: 4,200 Bytes
8bf4dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import torch
import torch.nn as nn

from typing import Optional, Sequence

from rl_algo_impls.shared.module.feature_extractor import FeatureExtractor
from rl_algo_impls.shared.policy.actor import (
    PiForward,
    Actor,
    StateDependentNoiseActorHead,
    actor_head,
)
from rl_algo_impls.shared.policy.critic import CriticHead
from rl_algo_impls.shared.policy.on_policy import (
    Step,
    ACForward,
    OnPolicy,
    clamp_actions,
    default_hidden_sizes,
)
from rl_algo_impls.shared.policy.policy import ACTIVATION
from rl_algo_impls.wrappers.vectorable_wrapper import (
    VecEnv,
    VecEnvObs,
    single_observation_space,
    single_action_space,
)

PI_FILE_NAME = "pi.pt"
V_FILE_NAME = "v.pt"


class VPGActor(Actor):
    def __init__(self, feature_extractor: FeatureExtractor, head: Actor) -> None:
        super().__init__()
        self.feature_extractor = feature_extractor
        self.head = head

    def forward(self, obs: torch.Tensor, a: Optional[torch.Tensor] = None) -> PiForward:
        fe = self.feature_extractor(obs)
        return self.head(fe, a)


class VPGActorCritic(OnPolicy):
    def __init__(
        self,
        env: VecEnv,
        hidden_sizes: Optional[Sequence[int]] = None,
        init_layers_orthogonal: bool = True,
        activation_fn: str = "tanh",
        log_std_init: float = -0.5,
        use_sde: bool = False,
        full_std: bool = True,
        squash_output: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(env, **kwargs)
        activation = ACTIVATION[activation_fn]
        obs_space = single_observation_space(env)
        self.action_space = single_action_space(env)
        self.use_sde = use_sde
        self.squash_output = squash_output

        hidden_sizes = (
            hidden_sizes
            if hidden_sizes is not None
            else default_hidden_sizes(obs_space)
        )

        pi_feature_extractor = FeatureExtractor(
            obs_space, activation, init_layers_orthogonal=init_layers_orthogonal
        )
        pi_head = actor_head(
            self.action_space,
            (pi_feature_extractor.out_dim,) + tuple(hidden_sizes),
            init_layers_orthogonal,
            activation,
            log_std_init=log_std_init,
            use_sde=use_sde,
            full_std=full_std,
            squash_output=squash_output,
        )
        self.pi = VPGActor(pi_feature_extractor, pi_head)

        v_feature_extractor = FeatureExtractor(
            obs_space, activation, init_layers_orthogonal=init_layers_orthogonal
        )
        v_head = CriticHead(
            (v_feature_extractor.out_dim,) + tuple(hidden_sizes),
            activation=activation,
            init_layers_orthogonal=init_layers_orthogonal,
        )
        self.v = nn.Sequential(v_feature_extractor, v_head)

    def value(self, obs: VecEnvObs) -> np.ndarray:
        o = self._as_tensor(obs)
        with torch.no_grad():
            v = self.v(o)
        return v.cpu().numpy()

    def step(self, obs: VecEnvObs) -> Step:
        o = self._as_tensor(obs)
        with torch.no_grad():
            pi, _, _ = self.pi(o)
            a = pi.sample()
            logp_a = pi.log_prob(a)

            v = self.v(o)

        a_np = a.cpu().numpy()
        clamped_a_np = clamp_actions(a_np, self.action_space, self.squash_output)
        return Step(a_np, v.cpu().numpy(), logp_a.cpu().numpy(), clamped_a_np)

    def act(self, obs: np.ndarray, deterministic: bool = True) -> np.ndarray:
        if not deterministic:
            return self.step(obs).clamped_a
        else:
            o = self._as_tensor(obs)
            with torch.no_grad():
                pi, _, _ = self.pi(o)
                a = pi.mode
            return clamp_actions(a.cpu().numpy(), self.action_space, self.squash_output)

    def load(self, path: str) -> None:
        super().load(path)
        self.reset_noise()

    def reset_noise(self, batch_size: Optional[int] = None) -> None:
        if isinstance(self.pi.head, StateDependentNoiseActorHead):
            self.pi.head.sample_weights(
                batch_size=batch_size if batch_size else self.env.num_envs
            )