sgoodfriend's picture
VPG playing MountainCarContinuous-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/0511de345b17175b7cf1ea706c3e05981f11761c
0e936e1
raw
history blame
8.22 kB
from abc import abstractmethod
from typing import NamedTuple, Optional, Sequence, Tuple, TypeVar
import gym
import numpy as np
import torch
from gym.spaces import Box, Discrete, Space
from rl_algo_impls.shared.actor import PiForward, actor_head
from rl_algo_impls.shared.encoder import Encoder
from rl_algo_impls.shared.policy.critic import CriticHead
from rl_algo_impls.shared.policy.policy import ACTIVATION, Policy
from rl_algo_impls.wrappers.vectorable_wrapper import (
VecEnv,
VecEnvObs,
single_action_space,
single_observation_space,
)
class Step(NamedTuple):
a: np.ndarray
v: np.ndarray
logp_a: np.ndarray
clamped_a: np.ndarray
class ACForward(NamedTuple):
logp_a: torch.Tensor
entropy: torch.Tensor
v: torch.Tensor
FEAT_EXT_FILE_NAME = "feat_ext.pt"
V_FEAT_EXT_FILE_NAME = "v_feat_ext.pt"
PI_FILE_NAME = "pi.pt"
V_FILE_NAME = "v.pt"
ActorCriticSelf = TypeVar("ActorCriticSelf", bound="ActorCritic")
def clamp_actions(
actions: np.ndarray, action_space: gym.Space, squash_output: bool
) -> np.ndarray:
if isinstance(action_space, Box):
low, high = action_space.low, action_space.high # type: ignore
if squash_output:
# Squashed output is already between -1 and 1. Rescale if the actual
# output needs to something other than -1 and 1
return low + 0.5 * (actions + 1) * (high - low)
else:
return np.clip(actions, low, high)
return actions
def default_hidden_sizes(obs_space: Space) -> Sequence[int]:
if isinstance(obs_space, Box):
if len(obs_space.shape) == 3:
# By default feature extractor to output has no hidden layers
return []
elif len(obs_space.shape) == 1:
return [64, 64]
else:
raise ValueError(f"Unsupported observation space: {obs_space}")
elif isinstance(obs_space, Discrete):
return [64]
else:
raise ValueError(f"Unsupported observation space: {obs_space}")
class OnPolicy(Policy):
@abstractmethod
def value(self, obs: VecEnvObs) -> np.ndarray:
...
@abstractmethod
def step(self, obs: VecEnvObs, action_masks: Optional[np.ndarray] = None) -> Step:
...
@property
@abstractmethod
def action_shape(self) -> Tuple[int, ...]:
...
class ActorCritic(OnPolicy):
def __init__(
self,
env: VecEnv,
pi_hidden_sizes: Optional[Sequence[int]] = None,
v_hidden_sizes: Optional[Sequence[int]] = None,
init_layers_orthogonal: bool = True,
activation_fn: str = "tanh",
log_std_init: float = -0.5,
use_sde: bool = False,
full_std: bool = True,
squash_output: bool = False,
share_features_extractor: bool = True,
cnn_flatten_dim: int = 512,
cnn_style: str = "nature",
cnn_layers_init_orthogonal: Optional[bool] = None,
impala_channels: Sequence[int] = (16, 32, 32),
actor_head_style: str = "single",
**kwargs,
) -> None:
super().__init__(env, **kwargs)
observation_space = single_observation_space(env)
action_space = single_action_space(env)
pi_hidden_sizes = (
pi_hidden_sizes
if pi_hidden_sizes is not None
else default_hidden_sizes(observation_space)
)
v_hidden_sizes = (
v_hidden_sizes
if v_hidden_sizes is not None
else default_hidden_sizes(observation_space)
)
activation = ACTIVATION[activation_fn]
self.action_space = action_space
self.squash_output = squash_output
self.share_features_extractor = share_features_extractor
self._feature_extractor = Encoder(
observation_space,
activation,
init_layers_orthogonal=init_layers_orthogonal,
cnn_flatten_dim=cnn_flatten_dim,
cnn_style=cnn_style,
cnn_layers_init_orthogonal=cnn_layers_init_orthogonal,
impala_channels=impala_channels,
)
self._pi = actor_head(
self.action_space,
self._feature_extractor.out_dim,
tuple(pi_hidden_sizes),
init_layers_orthogonal,
activation,
log_std_init=log_std_init,
use_sde=use_sde,
full_std=full_std,
squash_output=squash_output,
actor_head_style=actor_head_style,
)
if not share_features_extractor:
self._v_feature_extractor = Encoder(
observation_space,
activation,
init_layers_orthogonal=init_layers_orthogonal,
cnn_flatten_dim=cnn_flatten_dim,
cnn_style=cnn_style,
cnn_layers_init_orthogonal=cnn_layers_init_orthogonal,
)
critic_in_dim = self._v_feature_extractor.out_dim
else:
self._v_feature_extractor = None
critic_in_dim = self._feature_extractor.out_dim
self._v = CriticHead(
in_dim=critic_in_dim,
hidden_sizes=v_hidden_sizes,
activation=activation,
init_layers_orthogonal=init_layers_orthogonal,
)
def _pi_forward(
self,
obs: torch.Tensor,
action_masks: Optional[torch.Tensor],
action: Optional[torch.Tensor] = None,
) -> Tuple[PiForward, torch.Tensor]:
p_fe = self._feature_extractor(obs)
pi_forward = self._pi(p_fe, actions=action, action_masks=action_masks)
return pi_forward, p_fe
def _v_forward(self, obs: torch.Tensor, p_fc: torch.Tensor) -> torch.Tensor:
v_fe = self._v_feature_extractor(obs) if self._v_feature_extractor else p_fc
return self._v(v_fe)
def forward(
self,
obs: torch.Tensor,
action: torch.Tensor,
action_masks: Optional[torch.Tensor] = None,
) -> ACForward:
(_, logp_a, entropy), p_fc = self._pi_forward(obs, action_masks, action=action)
v = self._v_forward(obs, p_fc)
assert logp_a is not None
assert entropy is not None
return ACForward(logp_a, entropy, v)
def value(self, obs: VecEnvObs) -> np.ndarray:
o = self._as_tensor(obs)
with torch.no_grad():
fe = (
self._v_feature_extractor(o)
if self._v_feature_extractor
else self._feature_extractor(o)
)
v = self._v(fe)
return v.cpu().numpy()
def step(self, obs: VecEnvObs, action_masks: Optional[np.ndarray] = None) -> Step:
o = self._as_tensor(obs)
a_masks = self._as_tensor(action_masks) if action_masks is not None else None
with torch.no_grad():
(pi, _, _), p_fc = self._pi_forward(o, action_masks=a_masks)
a = pi.sample()
logp_a = pi.log_prob(a)
v = self._v_forward(o, p_fc)
a_np = a.cpu().numpy()
clamped_a_np = clamp_actions(a_np, self.action_space, self.squash_output)
return Step(a_np, v.cpu().numpy(), logp_a.cpu().numpy(), clamped_a_np)
def act(
self,
obs: np.ndarray,
deterministic: bool = True,
action_masks: Optional[np.ndarray] = None,
) -> np.ndarray:
if not deterministic:
return self.step(obs, action_masks=action_masks).clamped_a
else:
o = self._as_tensor(obs)
a_masks = (
self._as_tensor(action_masks) if action_masks is not None else None
)
with torch.no_grad():
(pi, _, _), _ = self._pi_forward(o, action_masks=a_masks)
a = pi.mode
return clamp_actions(a.cpu().numpy(), self.action_space, self.squash_output)
def load(self, path: str) -> None:
super().load(path)
self.reset_noise()
def reset_noise(self, batch_size: Optional[int] = None) -> None:
self._pi.sample_weights(
batch_size=batch_size if batch_size else self.env.num_envs
)
@property
def action_shape(self) -> Tuple[int, ...]:
return self._pi.action_shape