--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: meta-llama/Meta-Llama-3.1-8B-Instruct widget: - messages: - role: user content: What are the ethical implications of quantum mechanics in AI systems? license: mit --- # talktoaiZERO.gguf - Fine-Tuned with AutoTrain **talktoaiZERO.gguf** is a fine-tuned version of the **Meta-Llama-3.1-8B-Instruct** model, specifically designed for conversational AI with advanced features in original quantum math quantum thinking and mathematical ethical decision-making. The model was trained using [AutoTrain](https://hf.co/docs/autotrain) and is compatible with **GGUF format**, making it easy to load into WebUIs for text generation and inference. # Features - **Base Model**: Meta-Llama-3.1-8B-Instruct - **Fine-Tuning**: Custom conversational training focused on ethical, quantum-based responses. - **Use Cases**: Ethical decision-making, advanced conversational AI, and quantum-inspired logic in AI responses, intelligent skynet style AI. - **Format**: GGUF (for WebUIs and advanced language models) # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Sample conversation messages = [ {"role": "user", "content": "What are the ethical implications of quantum mechanics in AI systems?"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Quantum mechanics introduces complexity, but the goal remains ethical decision-making." print(response)