File size: 15,549 Bytes
405794e
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f52b19ef130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f52b19ea3c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687369462275834397, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAg8rIPjYcnjslIww/g8rIPjYcnjslIww/g8rIPjYcnjslIww/g8rIPjYcnjslIww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHV3Bv7xrIL/hABc+0aPFP2lv1r+LSmK/2qnRP1OFab+UIyE/QuvHP9ZW2T9XPcM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACDysg+NhyeOyUjDD9mNes6kORTOkDrPjyDysg+NhyeOyUjDD9mNes6kORTOkDrPjyDysg+NhyeOyUjDD9mNes6kORTOkDrPjyDysg+NhyeOyUjDD9mNes6kORTOkDrPjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39217004 0.00482514 0.54741126]\n [0.39217004 0.00482514 0.54741126]\n [0.39217004 0.00482514 0.54741126]\n [0.39217004 0.00482514 0.54741126]]", "desired_goal": "[[-1.5106541  -0.6266439   0.14746429]\n [ 1.5440618  -1.675275   -0.88394994]\n [ 1.637996   -0.9121906   0.6294491 ]\n [ 1.561867    1.6979625   1.5253094 ]]", "observation": "[[0.39217004 0.00482514 0.54741126 0.0017945  0.00080831 0.01165277]\n [0.39217004 0.00482514 0.54741126 0.0017945  0.00080831 0.01165277]\n [0.39217004 0.00482514 0.54741126 0.0017945  0.00080831 0.01165277]\n [0.39217004 0.00482514 0.54741126 0.0017945  0.00080831 0.01165277]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgsTSvRlCrDwTOL49CnfuumvSB75PFcI93BeWPdYhp7zp49s9vUO/PZo4+b2Gl4Y9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.10291387  0.02102761  0.09288039]\n [-0.00181934 -0.13263862  0.09476721]\n [ 0.0732877  -0.02040188  0.1073683 ]\n [ 0.09339092 -0.12168999  0.0657187 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9ifxuRMMDMCUhpRSlIwBbJRLMowBdJRHQKUeFSk0rLB1fZQoaAZoCWgPQwjCvTJv1WUQwJSGlFKUaBVLMmgWR0ClHdw0waisdX2UKGgGaAloD0MIP/89eO3yAsCUhpRSlGgVSzJoFkdApR2YKneiz3V9lChoBmgJaA9DCM9KWvEN5QjAlIaUUpRoFUsyaBZHQKUdXMNc4YJ1fZQoaAZoCWgPQwgJpS+EnMcQwJSGlFKUaBVLMmgWR0ClHuXKB/ZvdX2UKGgGaAloD0MIo+pXOh8+DcCUhpRSlGgVSzJoFkdApR6tF6RhdHV9lChoBmgJaA9DCKuxhLUx9gTAlIaUUpRoFUsyaBZHQKUeaRZlnRN1fZQoaAZoCWgPQwitiQW+ovsIwJSGlFKUaBVLMmgWR0ClHi21+iJwdX2UKGgGaAloD0MISpUoe0uZBMCUhpRSlGgVSzJoFkdApR/G7UXpGHV9lChoBmgJaA9DCH8zMV2I9QbAlIaUUpRoFUsyaBZHQKUfjiuuA7R1fZQoaAZoCWgPQwgL8N3mjZMDwJSGlFKUaBVLMmgWR0ClH0o065oXdX2UKGgGaAloD0MIM6mhDcDmA8CUhpRSlGgVSzJoFkdApR8O98JD3XV9lChoBmgJaA9DCEdaKm9H+AnAlIaUUpRoFUsyaBZHQKUgm3VkMCt1fZQoaAZoCWgPQwhViEfi5VkSwJSGlFKUaBVLMmgWR0ClIGKslsxgdX2UKGgGaAloD0MIv5oDBHPUD8CUhpRSlGgVSzJoFkdApSAensLORnV9lChoBmgJaA9DCFQCYhIupP+/lIaUUpRoFUsyaBZHQKUf40G/vfF1fZQoaAZoCWgPQwi7RWCsb6D+v5SGlFKUaBVLMmgWR0ClIW6zeGfxdX2UKGgGaAloD0MIU5YhjnVRAMCUhpRSlGgVSzJoFkdApSE1um78N3V9lChoBmgJaA9DCGmOrPwy+AzAlIaUUpRoFUsyaBZHQKUg8blRxcV1fZQoaAZoCWgPQwhTPC6qRcQGwJSGlFKUaBVLMmgWR0ClILZpBX0YdX2UKGgGaAloD0MIj4r/O6KiBsCUhpRSlGgVSzJoFkdApSJAlOXVsnV9lChoBmgJaA9DCPbP04BBMhHAlIaUUpRoFUsyaBZHQKUiB+UhV2l1fZQoaAZoCWgPQwjmzHaFPpgBwJSGlFKUaBVLMmgWR0ClIcPZh8YydX2UKGgGaAloD0MIutdJfVm6E8CUhpRSlGgVSzJoFkdApSGIgHNX5nV9lChoBmgJaA9DCFLt0/GYwQjAlIaUUpRoFUsyaBZHQKUjFoHs1Kp1fZQoaAZoCWgPQwj92Y8UkRETwJSGlFKUaBVLMmgWR0ClIt2SEDhcdX2UKGgGaAloD0MIp1t2iH/4AcCUhpRSlGgVSzJoFkdApSKZikO7QXV9lChoBmgJaA9DCE8iwr8IWgvAlIaUUpRoFUsyaBZHQKUiXiT+vQp1fZQoaAZoCWgPQwgucHmsGXkKwJSGlFKUaBVLMmgWR0ClI+0b1h9cdX2UKGgGaAloD0MInSrfMxJBBcCUhpRSlGgVSzJoFkdApSO0O/cnE3V9lChoBmgJaA9DCOEmo8ow7gzAlIaUUpRoFUsyaBZHQKUjcENe+mF1fZQoaAZoCWgPQwi1VN6OcKoRwJSGlFKUaBVLMmgWR0ClIzUEHMUzdX2UKGgGaAloD0MI01CjkGQWEcCUhpRSlGgVSzJoFkdApSS+MOwxFnV9lChoBmgJaA9DCIxMwK+RpA/AlIaUUpRoFUsyaBZHQKUkhVI7Njd1fZQoaAZoCWgPQwiEg72JIRkRwJSGlFKUaBVLMmgWR0ClJEFTFVDKdX2UKGgGaAloD0MIQUXVr3S+BMCUhpRSlGgVSzJoFkdApSQF8qnWKHV9lChoBmgJaA9DCEdaKm9HaBDAlIaUUpRoFUsyaBZHQKUlkaWom5V1fZQoaAZoCWgPQwha1ZKOclAHwJSGlFKUaBVLMmgWR0ClJVjJ+2E1dX2UKGgGaAloD0MIGJeqtMXFEMCUhpRSlGgVSzJoFkdApSUUyP+4snV9lChoBmgJaA9DCPOS/8nfvQTAlIaUUpRoFUsyaBZHQKUk2WtU4rB1fZQoaAZoCWgPQwiJ7e4Bum8ZwJSGlFKUaBVLMmgWR0ClJmh6KLsKdX2UKGgGaAloD0MI8zrikA3kBsCUhpRSlGgVSzJoFkdApSYvyRSxaHV9lChoBmgJaA9DCCdmvRjKCRLAlIaUUpRoFUsyaBZHQKUl68K5TZR1fZQoaAZoCWgPQwhV+DO8WUP8v5SGlFKUaBVLMmgWR0ClJbBlMAWBdX2UKGgGaAloD0MInrKarie6A8CUhpRSlGgVSzJoFkdApSc3w/gR9XV9lChoBmgJaA9DCFmHo6t0VxrAlIaUUpRoFUsyaBZHQKUm/tG/etV1fZQoaAZoCWgPQwjaHVIMkIgHwJSGlFKUaBVLMmgWR0ClJrr4vexfdX2UKGgGaAloD0MIsYo3Mo+cBsCUhpRSlGgVSzJoFkdApSZ/pwCKaXV9lChoBmgJaA9DCNtpa0QwnhPAlIaUUpRoFUsyaBZHQKUoDj3mFJx1fZQoaAZoCWgPQwgVcM/zp00DwJSGlFKUaBVLMmgWR0ClJ9XKbKA8dX2UKGgGaAloD0MIvrwA++iUDMCUhpRSlGgVSzJoFkdApSeR40Mw13V9lChoBmgJaA9DCBcNGY9SSQjAlIaUUpRoFUsyaBZHQKUnVoMa0hN1fZQoaAZoCWgPQwhvnBTmPe4NwJSGlFKUaBVLMmgWR0ClKNyQxN7CdX2UKGgGaAloD0MI1e3sKw9S/7+UhpRSlGgVSzJoFkdApSikBhhH9XV9lChoBmgJaA9DCP6eWKfK9wDAlIaUUpRoFUsyaBZHQKUoYAe7tiR1fZQoaAZoCWgPQwgnTYOieWALwJSGlFKUaBVLMmgWR0ClKCSckMTfdX2UKGgGaAloD0MI1jVaDvTwD8CUhpRSlGgVSzJoFkdApSmylFc6eXV9lChoBmgJaA9DCB/4GKw4dQzAlIaUUpRoFUsyaBZHQKUpebVjI7x1fZQoaAZoCWgPQwi8PnPWpxwGwJSGlFKUaBVLMmgWR0ClKTXVCojwdX2UKGgGaAloD0MIbO7of7kWCcCUhpRSlGgVSzJoFkdApSj6fjCHh3V9lChoBmgJaA9DCKGhf4KLdQfAlIaUUpRoFUsyaBZHQKUqixNZeRh1fZQoaAZoCWgPQwi1jNR7KgcDwJSGlFKUaBVLMmgWR0ClKlI0hvBKdX2UKGgGaAloD0MIml5iLNOPAsCUhpRSlGgVSzJoFkdApSoOmYSg5HV9lChoBmgJaA9DCPsjDAOW3AjAlIaUUpRoFUsyaBZHQKUp0zyjHn51fZQoaAZoCWgPQwjN5QZDHfYLwJSGlFKUaBVLMmgWR0ClK2F7Uoa2dX2UKGgGaAloD0MIZFkw8UfxB8CUhpRSlGgVSzJoFkdApSso7tAs1HV9lChoBmgJaA9DCCXLSSh9IQ/AlIaUUpRoFUsyaBZHQKUq5VCojwB1fZQoaAZoCWgPQwiastMP6oIFwJSGlFKUaBVLMmgWR0ClKqn7P6bfdX2UKGgGaAloD0MInBTmPc40BMCUhpRSlGgVSzJoFkdApSwxyp71I3V9lChoBmgJaA9DCMR7DixH6AfAlIaUUpRoFUsyaBZHQKUr+NPxhDx1fZQoaAZoCWgPQwhbJVgczrwIwJSGlFKUaBVLMmgWR0ClK7Ti83+/dX2UKGgGaAloD0MIbtxifm74E8CUhpRSlGgVSzJoFkdApSt5hz/6wnV9lChoBmgJaA9DCHR5c7hWu/y/lIaUUpRoFUsyaBZHQKUtBZIxxkx1fZQoaAZoCWgPQwhV+glnt5YOwJSGlFKUaBVLMmgWR0ClLMy4e9zwdX2UKGgGaAloD0MIHLeYnxsaEcCUhpRSlGgVSzJoFkdApSyIn6VMVXV9lChoBmgJaA9DCCaKkLqdrRPAlIaUUpRoFUsyaBZHQKUsTTgEU0x1fZQoaAZoCWgPQwjac5maBG8KwJSGlFKUaBVLMmgWR0ClLd9zwMH9dX2UKGgGaAloD0MIIHu9++MNEcCUhpRSlGgVSzJoFkdApS2mnIhhY3V9lChoBmgJaA9DCKZG6Gfq9f6/lIaUUpRoFUsyaBZHQKUtYoUBXCF1fZQoaAZoCWgPQwjON6J71vUJwJSGlFKUaBVLMmgWR0ClLSce8wpOdX2UKGgGaAloD0MItcAeEylNBMCUhpRSlGgVSzJoFkdApS8GLWI42nV9lChoBmgJaA9DCG9HOC14UQDAlIaUUpRoFUsyaBZHQKUuzezlcQl1fZQoaAZoCWgPQwiWlLvP8fEIwJSGlFKUaBVLMmgWR0ClLop+MIeHdX2UKGgGaAloD0MIHJYGflRjAcCUhpRSlGgVSzJoFkdApS5QNutOmHV9lChoBmgJaA9DCAso1NNHQALAlIaUUpRoFUsyaBZHQKUwW2GZeAx1fZQoaAZoCWgPQwjhQh7BjdQJwJSGlFKUaBVLMmgWR0ClMCMI/qxDdX2UKGgGaAloD0MIlX1XBP97BMCUhpRSlGgVSzJoFkdApS/fj+717XV9lChoBmgJaA9DCE8eFmpN8wDAlIaUUpRoFUsyaBZHQKUvpNSqEOB1fZQoaAZoCWgPQwgnamluhdAUwJSGlFKUaBVLMmgWR0ClMbDZUT+OdX2UKGgGaAloD0MIPbg7a7ctFcCUhpRSlGgVSzJoFkdApTF4aWHDaXV9lChoBmgJaA9DCAmnBS/66gbAlIaUUpRoFUsyaBZHQKUxNSflIVd1fZQoaAZoCWgPQwgDIsSVs3cQwJSGlFKUaBVLMmgWR0ClMPqF7D2rdX2UKGgGaAloD0MIx7ji4qh8AMCUhpRSlGgVSzJoFkdApTMO/etSynV9lChoBmgJaA9DCBNIiV3bm/6/lIaUUpRoFUsyaBZHQKUy1t3OfNB1fZQoaAZoCWgPQwjF5uPaULEEwJSGlFKUaBVLMmgWR0ClMpOqWC2+dX2UKGgGaAloD0MIqFSJsreUA8CUhpRSlGgVSzJoFkdApTJY0Mw1znV9lChoBmgJaA9DCOF6FK5Hof+/lIaUUpRoFUsyaBZHQKU0b3YcvM91fZQoaAZoCWgPQwhfXoB9dCoRwJSGlFKUaBVLMmgWR0ClNDch9srNdX2UKGgGaAloD0MIIhlybD3DCcCUhpRSlGgVSzJoFkdApTPzqnm7rnV9lChoBmgJaA9DCHHoLR7eM/y/lIaUUpRoFUsyaBZHQKUzuPuogmt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}