File size: 8,345 Bytes
d4a1475
 
 
 
 
 
 
 
 
 
c33f334
d4a1475
c33f334
 
 
 
d4a1475
 
 
c33f334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a1475
 
 
 
 
 
 
9846bc7
d4a1475
 
 
c33f334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a1475
 
 
 
 
 
 
 
c33f334
 
 
 
 
 
 
 
 
 
 
d4a1475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c33f334
d4a1475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c33f334
d4a1475
 
 
c33f334
d4a1475
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
library_name: transformers
tags: []
---


## Model Details

### Model Description

This model is created for answering the KUET(Khulna University of Engineering & Technology) information.

- **Developed by:** Md. Shahidul Salim
- **Model type:** Question answering
- **Language(s) (NLP):** English
- **Finetuned from model:** mistralai/Mistral-7B-Instruct-v0.1


## How to Get Started with the Model
```
import transformers
from transformers import AutoTokenizer
model_name="shahidul034/KUET_LLM_Mistral"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
pipe = pipeline("text-generation",
                model=full_output,
                tokenizer= tokenizer,
                torch_dtype=torch.bfloat16,
                device_map="auto",
                max_new_tokens = 512,
                do_sample=True,
                top_k=30,
                num_return_sequences=1,
                eos_token_id=tokenizer.eos_token_id
                )
from langchain import HuggingFacePipeline
llm = HuggingFacePipeline(pipeline = pipe, model_kwargs = {'temperature':0})
from langchain.llms import HuggingFaceTextGenInference
from langchain.llms import HuggingFaceTextGenInference
from langchain import PromptTemplate
from langchain.schema import StrOutputParser

template = """
    <s>[INST] <<SYS>>
    {role}
    <</SYS>>       
    {text} [/INST]
"""

prompt = PromptTemplate(
    input_variables = [
        "role", 
        "text"
    ],
    template = template,
)
role = "You are a KUET authority managed chatbot, help users by answering their queries about KUET."
chain = prompt | llm | StrOutputParser()
ques="What is KUET?"
ans=chain.invoke({"role": role,"text":ques})
print(ans)
```

[More Information Needed]

## Training Details

### Training Data

Custom dataset, which is collected from the KUET website.

### Training Procedure 

```
import os
import torch
from datasets import load_dataset, Dataset
import pandas as pd
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from trl import SFTTrainer
import transformers
# from peft import AutoPeftModelForCausalLM
from transformers import GenerationConfig
from pynvml import *
import glob
base_model = "mistralai/Mistral-7B-Instruct-v0.2"
lora_output = 'models/lora_KUET_LLM_Mistral'
full_output = 'models/full_KUET_LLM_Mistral'
DEVICE = 'cuda'
bnb_config = BitsAndBytesConfig(  
    load_in_8bit= True,
#     bnb_4bit_quant_type= "nf4",
#     bnb_4bit_compute_dtype= torch.bfloat16,
#     bnb_4bit_use_double_quant= False,
)
model = AutoModelForCausalLM.from_pretrained(
        base_model,
        # load_in_4bit=True,
        quantization_config=bnb_config,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        trust_remote_code=True,
)
model.config.use_cache = False # silence the warnings
model.config.pretraining_tp = 1
model.gradient_checkpointing_enable()
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.padding_side = 'right'
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_eos_token = True
tokenizer.add_bos_token, tokenizer.add_eos_token

### read csv with Prompt, Answer pair 
data_location = r"/home/sdm/Desktop/shakib/KUET LLM/data/dataset_shakibV2.xlsx" ## replace here
data_df=pd.read_excel( data_location )
def formatted_text(x):
    temp = [
    # {"role": "system", "content": "Answer as a medical assistant. Respond concisely."},
    {"role": "user", "content": """Answer the question concisely as a medical assisstant.
     Question: """ + x["Prompt"]},
    {"role": "assistant", "content": x["Reply"]}
    ]
    return tokenizer.apply_chat_template(temp, add_generation_prompt=False, tokenize=False)

### set formatting
data_df["text"] = data_df[["Prompt", "Reply"]].apply(lambda x: formatted_text(x), axis=1) ## replace Prompt and Answer if collected dataset has different column names
print(data_df.iloc[0])
dataset = Dataset.from_pandas(data_df)
# Set PEFT adapter config (16:32)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training

# target modules are currently selected for zephyr base model
config = LoraConfig(
    r=16,
    lora_alpha=32,
    target_modules=["q_proj", "v_proj","k_proj","o_proj","gate_proj","up_proj","down_proj"],   # target all the linear layers for full finetuning
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM")

# stabilize output layer and layernorms
model = prepare_model_for_kbit_training(model, 8)
# Set PEFT adapter on model (Last step)
model = get_peft_model(model, config)
# Set Hyperparameters
MAXLEN=512
BATCH_SIZE=4
GRAD_ACC=4
OPTIMIZER='paged_adamw_8bit' # save memory
LR=5e-06                      # slightly smaller than pretraining lr | and close to LoRA standard
# Set training config
training_config = transformers.TrainingArguments(per_device_train_batch_size=BATCH_SIZE,
                                                 gradient_accumulation_steps=GRAD_ACC,
                                                 optim=OPTIMIZER,
                                                 learning_rate=LR,
                                                 fp16=True,            # consider compatibility when using bf16
                                                 logging_steps=10,
                                                 num_train_epochs = 2,
                                                 output_dir=lora_output,
                                                 remove_unused_columns=True,
                                                 )

# Set collator
data_collator = transformers.DataCollatorForLanguageModeling(tokenizer,mlm=False)

# Setup trainer
trainer = SFTTrainer(model=model,
                               train_dataset=dataset,
                               data_collator=data_collator,
                               args=training_config,
                               dataset_text_field="text",
                            #    callbacks=[early_stop], need to learn, lora easily overfits
                              )

trainer.train()
trainer.save_model(lora_output)

# Get peft config
from peft import PeftConfig
config = PeftConfig.from_pretrained(lora_output)
# Get base model
model = transformers.AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(base_model)
# Load the Lora model
from peft import PeftModel
model = PeftModel.from_pretrained(model, lora_output)

# Get tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(config.base_model_name_or_path)
merged_model = model.merge_and_unload()
merged_model.save_pretrained(full_output)
tokenizer.save_pretrained(full_output)

```

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 24
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

194 questions are generated by students.

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]


## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hours used:** 2 hours


#### Hardware
RTX 4090