shahp7575 commited on
Commit
459001c
1 Parent(s): 746c60a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GPT2-Horoscopes
2
+
3
+ ## Model Description
4
+ GPT2 fine-tuned on Horoscopes dataset scraped from [Horoscopes.com](https://www.horoscope.com/us/index.aspx). This model generates horoscopes given a horoscope *category*.
5
+
6
+ ## Uses & Limitations
7
+
8
+ ### How to use
9
+ The model can be used directly with the HuggingFace `pipeline` API.
10
+ ```python
11
+ from transformers import AutoTokenizer, AutoModelWithLMHead
12
+
13
+ tokenizer = AutoTokenizer.from_pretrained("shahp7575/gpt2-horoscopes")
14
+ model = AutoModelWithLMHead.from_pretrained("shahp7575/gpt2-horoscopes")
15
+ ```
16
+
17
+ ### Generation
18
+
19
+ Input Text Format - `<|category|> {category_type} <|horoscope|>`
20
+
21
+ Supported Categories - *general, career, love, wellness, birthday*
22
+
23
+ Example:
24
+ ```python
25
+ prompt = <|category|> career <|horoscope|>
26
+ prompt_encoded = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
27
+ sample_outputs = model.generate(prompt,
28
+ do_sample=True,
29
+ top_k=40,
30
+ max_length = 300,
31
+ top_p=0.95,
32
+ temperature=0.95,
33
+ num_return_sequences=1)
34
+ ```
35
+
36
+ ### Training Data
37
+ Dataset is scraped from [Horoscopes.com](https://www.horoscope.com/us/index.aspx) for 5 categories with a total of ~12k horoscopes. The dataset will be made public soon.
38
+
39
+ ### Training Procedure
40
+ The model uses the [GPT2](https://huggingface.co/gpt2) checkpoint and then is fine-tuned on horoscopes dataset for 5 different categories. Since the goal of the fine-tuned model was also to understand different horoscopes for different category types the *categories* are added to the training data separated by special token `<|category|>`.
41
+
42
+ **Training Parameters:**
43
+
44
+ - EPOCHS = 5
45
+ - LEARNING RATE = 5e-4
46
+ - WARMUP STEPS = 1e2
47
+ - EPSILON = 1e-8
48
+ - SEQUENCE LENGTH = 300
49
+
50
+ ### Evaluation Results
51
+
52
+ Loss: 2.77
53
+
54
+ ### Limitations
55
+ This model is only fine-tuned on horoscopes by categories. They do not, and neither attempt to, represent actual horoscopes. It is developed only for educational and learning purposes.
56
+
57
+ ## References
58
+
59
+ - [Rey Farhan's - Fine-tuning GPT2 Notebook](https://colab.research.google.com/drive/13dZVYEOMhXhkXWfvSMVM1TTtUDrT6Aeh?usp=sharing#scrollTo=_U3m6wr3Ahzt)
60
+
61
+ - [Jonathan Bgn - Building a Slogan Generator with GPT-2](https://jonathanbgn.com/gpt2/2020/01/20/slogan-generator.html)