--- license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: xls-r-300m-dv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: - name: Test CER type: cer value: --- # xls-r-300m-dv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - dv dataset. It achieves the following results on the evaluation set: - Loss: 0.6182 - Wer: 0.5481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.3529 | 2.63 | 400 | 1.2050 | 0.9526 | | 0.7191 | 5.26 | 800 | 0.6037 | 0.7216 | | 0.3981 | 7.89 | 1200 | 0.5048 | 0.6225 | | 0.2888 | 10.52 | 1600 | 0.5345 | 0.6170 | | 0.2229 | 13.16 | 2000 | 0.5261 | 0.6015 | | 0.1865 | 15.79 | 2400 | 0.5983 | 0.5924 | | 0.1542 | 18.42 | 2800 | 0.5900 | 0.5770 | | 0.1401 | 21.05 | 3200 | 0.6425 | 0.5783 | | 0.1205 | 23.68 | 3600 | 0.6322 | 0.5760 | | 0.1105 | 26.31 | 4000 | 0.6302 | 0.5567 | | 0.0958 | 28.94 | 4400 | 0.6182 | 0.5481 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0