## Training details - Dataset used: Explanation style datasets from psmathur/WizardLM_Orca and Dahoas/cot_gsm8k - Techniques: fp16 bit precision training + LoRA + DeepSpeed - Machine: V100 (16GB) * 2 ## Inference ```python from peft import PeftModel from huggingface_hub import hf_hub_download from transformers import LlamaTokenizer, LlamaForCausalLM import json model_name = "shahules786/open-llama-3B-orcastyle" config = hf_hub_download(repo_id=model_name, filename="adapter_config.json", local_dir=".") config = json.load(open("adapter_config.json")) base_model = config["base_model_name_or_path"] tokenizer = LlamaTokenizer.from_pretrained(model_name) model = LlamaForCausalLM.from_pretrained(base_model) model.resize_token_embeddings(len(self.tokenizer)) model = PeftModel.from_pretrained(model, model_name).eval() tokenizer.padding_side = "left" inputs = tokenizer("This is a sample run", return_tensors="pt") model.generate(**inputs) ``` Checkout training and inference code [here](https://github.com/explodinggradients/Funtuner/tree/main/funtuner)