--- tags: - merge - mergekit - lazymergekit - shanchen/llama3-8B-slerp-med-chinese - shenzhi-wang/Llama3-8B-Chinese-Chat base_model: - shanchen/llama3-8B-slerp-med-chinese - shenzhi-wang/Llama3-8B-Chinese-Chat license: llama3 language: - zh - en --- # llama3-8B-slerp-biomed-chat-chinese llama3-8B-slerp-biomed-chat-chinese is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [shanchen/llama3-8B-slerp-med-chinese](https://huggingface.co/shanchen/llama3-8B-slerp-med-chinese) * [shenzhi-wang/Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) ## 🧩 Configuration ```yaml slices: - sources: - model: shanchen/llama3-8B-slerp-med-chinese layer_range: [0,32] - model: shenzhi-wang/Llama3-8B-Chinese-Chat layer_range: [0,32] merge_method: slerp base_model: shenzhi-wang/Llama3-8B-Chinese-Chat parameters: t: - filter: self_attn value: [0.3, 0.5, 0.5, 0.7, 1] - filter: mlp value: [1, 0.7, 0.5, 0.5, 0.3] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "shanchen/llama3-8B-slerp-biomed-chat-chinese" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", device_map="auto" ) messages = [ {"role": "user", "content": "Can you speak Japanese?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=192 max#8192, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ```