File size: 2,130 Bytes
feea713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: whisper-tiny-300v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 86.48648648648648
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-300v2
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4117
- Wer Ortho: 83.7838
- Wer: 86.4865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 30
- training_steps: 300
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.2322 | 20.0 | 60 | 1.3194 | 83.7838 | 83.7838 |
| 0.0267 | 40.0 | 120 | 1.3785 | 81.0811 | 81.0811 |
| 0.0002 | 60.0 | 180 | 1.3838 | 81.0811 | 81.0811 |
| 0.0001 | 80.0 | 240 | 1.4049 | 83.7838 | 83.7838 |
| 0.0 | 100.0 | 300 | 1.4117 | 83.7838 | 86.4865 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|