--- library_name: transformers license: other license_name: eva-llama3.3 base_model: EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.0 tags: - generated_from_trainer - mlx datasets: - anthracite-org/kalo-opus-instruct-22k-no-refusal - Nopm/Opus_WritingStruct - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Gryphe/Sonnet3.5-Charcard-Roleplay - Gryphe/ChatGPT-4o-Writing-Prompts - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - nothingiisreal/Reddit-Dirty-And-WritingPrompts - allura-org/Celeste-1.x-data-mixture - cognitivecomputations/dolphin-2.9.3 model-index: - name: dev/shm/EVA-LLaMA-3.33-70B-v0.1 results: [] --- # shanginn/EVA-UNIT-01-EVA-LLaMA-3.33-70B-v0.0-q4 The Model [shanginn/EVA-UNIT-01-EVA-LLaMA-3.33-70B-v0.0-q4](https://huggingface.co/shanginn/EVA-UNIT-01-EVA-LLaMA-3.33-70B-v0.0-q4) was converted to MLX format from [EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.0](https://huggingface.co/EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.0) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("shanginn/EVA-UNIT-01-EVA-LLaMA-3.33-70B-v0.0-q4") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```