Model save
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: OFA-Sys/chinese-clip-vit-base-patch16
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: aoi_clip_clean_new_sampler
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/5wmznry9)
|
14 |
+
# aoi_clip_clean_new_sampler
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 3.8199
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 1e-05
|
38 |
+
- train_batch_size: 40
|
39 |
+
- eval_batch_size: 44
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 120.0
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:------:|:---------------:|
|
50 |
+
| 2.3088 | 12.0 | 17748 | 3.1875 |
|
51 |
+
| 2.0566 | 24.0 | 35496 | 3.3424 |
|
52 |
+
| 1.9815 | 36.0 | 53244 | 3.4545 |
|
53 |
+
| 1.9566 | 48.0 | 70992 | 3.5668 |
|
54 |
+
| 1.9488 | 60.0 | 88740 | 3.5229 |
|
55 |
+
| 1.9424 | 72.0 | 106488 | 3.6771 |
|
56 |
+
| 1.9411 | 84.0 | 124236 | 3.7868 |
|
57 |
+
| 1.9388 | 96.0 | 141984 | 3.7067 |
|
58 |
+
| 1.9352 | 108.0 | 159732 | 3.8508 |
|
59 |
+
| 1.9318 | 120.0 | 177480 | 3.8199 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.42.3
|
65 |
+
- Pytorch 2.3.1+cu121
|
66 |
+
- Datasets 2.20.0
|
67 |
+
- Tokenizers 0.19.1
|