sharkMeow commited on
Commit
fe96572
1 Parent(s): e807de8

Model save

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: OFA-Sys/chinese-clip-vit-base-patch16
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: aoi_clip_high_resolution_concate_fusin_crop_each_text_512
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/9tw3ng1k)
16
+ # aoi_clip_high_resolution_concate_fusin_crop_each_text_512
17
+
18
+ This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 3.5539
21
+ - Accuracy: 0.0669
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 15
42
+ - eval_batch_size: 20
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 14
45
+ - total_train_batch_size: 210
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 60.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
55
+ | 1.5814 | 6.0 | 1530 | 3.0257 | 0.0726 |
56
+ | 1.4807 | 12.0 | 3060 | 3.2677 | 0.0712 |
57
+ | 1.4075 | 18.0 | 4590 | 3.3332 | 0.0703 |
58
+ | 1.3618 | 24.0 | 6120 | 3.2491 | 0.0692 |
59
+ | 1.3396 | 30.0 | 7650 | 3.3756 | 0.0690 |
60
+ | 1.3298 | 36.0 | 9180 | 3.5386 | 0.0678 |
61
+ | 1.324 | 42.0 | 10710 | 3.5245 | 0.0675 |
62
+ | 1.3177 | 48.0 | 12240 | 3.5136 | 0.0671 |
63
+ | 1.3181 | 54.0 | 13770 | 3.4984 | 0.0669 |
64
+ | 1.3117 | 60.0 | 15300 | 3.5539 | 0.0669 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.42.3
70
+ - Pytorch 2.3.1+cu121
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.19.1