File size: 1,994 Bytes
9b604f0
5f8b694
 
9b604f0
 
 
 
 
 
 
 
 
 
51b0177
9b604f0
 
5f8b694
f506eb8
51b0177
9b604f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51b0177
 
87a0633
9b604f0
 
 
87a0633
9b604f0
 
 
ca371b5
 
51b0177
 
 
 
 
 
 
 
 
 
9b604f0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: gpl-3.0
base_model: ckiplab/bert-base-chinese
tags:
- generated_from_trainer
model-index:
- name: clip-roberta-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/hbdfi8xo)
# clip-roberta-finetuned

This model is a fine-tuned version of [ckiplab/bert-base-chinese](https://huggingface.co/ckiplab/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3715

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 100
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.3102        | 10.0  | 390  | 2.7681          |
| 1.6079        | 20.0  | 780  | 1.5404          |
| 0.7749        | 30.0  | 1170 | 0.9966          |
| 0.4468        | 40.0  | 1560 | 0.7465          |
| 0.2965        | 50.0  | 1950 | 0.5970          |
| 0.2199        | 60.0  | 2340 | 0.5014          |
| 0.1751        | 70.0  | 2730 | 0.4469          |
| 0.1487        | 80.0  | 3120 | 0.4024          |
| 0.1317        | 90.0  | 3510 | 0.3746          |
| 0.1234        | 100.0 | 3900 | 0.3715          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1