File size: 1,994 Bytes
9b604f0 5f8b694 9b604f0 51b0177 9b604f0 5f8b694 f506eb8 51b0177 9b604f0 51b0177 87a0633 9b604f0 87a0633 9b604f0 ca371b5 51b0177 9b604f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: gpl-3.0
base_model: ckiplab/bert-base-chinese
tags:
- generated_from_trainer
model-index:
- name: clip-roberta-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/hbdfi8xo)
# clip-roberta-finetuned
This model is a fine-tuned version of [ckiplab/bert-base-chinese](https://huggingface.co/ckiplab/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3715
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 100
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.3102 | 10.0 | 390 | 2.7681 |
| 1.6079 | 20.0 | 780 | 1.5404 |
| 0.7749 | 30.0 | 1170 | 0.9966 |
| 0.4468 | 40.0 | 1560 | 0.7465 |
| 0.2965 | 50.0 | 1950 | 0.5970 |
| 0.2199 | 60.0 | 2340 | 0.5014 |
| 0.1751 | 70.0 | 2730 | 0.4469 |
| 0.1487 | 80.0 | 3120 | 0.4024 |
| 0.1317 | 90.0 | 3510 | 0.3746 |
| 0.1234 | 100.0 | 3900 | 0.3715 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|