Model save
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: OFA-Sys/chinese-clip-vit-base-patch16
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: fusion_None_sep_SEP_describe_llama
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# fusion_None_sep_SEP_describe_llama
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.5783
|
21 |
+
- Accuracy: 0.2858
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 60
|
42 |
+
- eval_batch_size: 20
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 8
|
45 |
+
- total_train_batch_size: 480
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 60.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
55 |
+
| 2.686 | 5.9653 | 774 | 2.3316 | 0.3232 |
|
56 |
+
| 2.5095 | 11.9306 | 1548 | 2.3506 | 0.3168 |
|
57 |
+
| 2.4304 | 17.8960 | 2322 | 2.4180 | 0.3103 |
|
58 |
+
| 2.3871 | 23.8613 | 3096 | 2.4723 | 0.3052 |
|
59 |
+
| 2.3556 | 29.8266 | 3870 | 2.5127 | 0.3 |
|
60 |
+
| 2.3325 | 35.7919 | 4644 | 2.5233 | 0.2965 |
|
61 |
+
| 2.3155 | 41.7572 | 5418 | 2.5572 | 0.2930 |
|
62 |
+
| 2.3137 | 47.7225 | 6192 | 2.5639 | 0.2903 |
|
63 |
+
| 2.2978 | 53.6879 | 6966 | 2.5749 | 0.2878 |
|
64 |
+
| 2.2964 | 59.6532 | 7740 | 2.5783 | 0.2858 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.45.2
|
70 |
+
- Pytorch 2.3.1+cu121
|
71 |
+
- Datasets 2.20.0
|
72 |
+
- Tokenizers 0.20.0
|