sharkMeow commited on
Commit
6594ae7
·
verified ·
1 Parent(s): f3b5367

Model save

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: OFA-Sys/chinese-clip-vit-base-patch16
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: fusion_None_sep_SEP_describe_llama
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # fusion_None_sep_SEP_describe_llama
17
+
18
+ This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 2.5783
21
+ - Accuracy: 0.2858
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 60
42
+ - eval_batch_size: 20
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 480
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - num_epochs: 60.0
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
55
+ | 2.686 | 5.9653 | 774 | 2.3316 | 0.3232 |
56
+ | 2.5095 | 11.9306 | 1548 | 2.3506 | 0.3168 |
57
+ | 2.4304 | 17.8960 | 2322 | 2.4180 | 0.3103 |
58
+ | 2.3871 | 23.8613 | 3096 | 2.4723 | 0.3052 |
59
+ | 2.3556 | 29.8266 | 3870 | 2.5127 | 0.3 |
60
+ | 2.3325 | 35.7919 | 4644 | 2.5233 | 0.2965 |
61
+ | 2.3155 | 41.7572 | 5418 | 2.5572 | 0.2930 |
62
+ | 2.3137 | 47.7225 | 6192 | 2.5639 | 0.2903 |
63
+ | 2.2978 | 53.6879 | 6966 | 2.5749 | 0.2878 |
64
+ | 2.2964 | 59.6532 | 7740 | 2.5783 | 0.2858 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.45.2
70
+ - Pytorch 2.3.1+cu121
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.20.0