File size: 2,142 Bytes
70966ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f5982d
70966ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentance_split_by_aoi_ocr_None_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sentance_split_by_aoi_ocr_None_2

This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4765
- Accuracy: 0.1927

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 25
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.2383        | 5.9676  | 276  | 2.6388          | 0.2417   |
| 0.9769        | 11.9351 | 552  | 2.8174          | 0.2247   |
| 0.8157        | 17.9027 | 828  | 3.1486          | 0.2148   |
| 0.7322        | 23.8703 | 1104 | 3.3020          | 0.2080   |
| 0.6777        | 29.8378 | 1380 | 3.3933          | 0.2026   |
| 0.6466        | 35.8054 | 1656 | 3.4180          | 0.1995   |
| 0.6273        | 41.7730 | 1932 | 3.4385          | 0.1971   |
| 0.6188        | 47.7405 | 2208 | 3.4671          | 0.1953   |
| 0.6051        | 53.7081 | 2484 | 3.4631          | 0.1944   |
| 0.6049        | 59.6757 | 2760 | 3.4765          | 0.1935   |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.0