File size: 2,330 Bytes
7c261d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e681ca
7c261d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: OFA-Sys/chinese-clip-vit-base-patch16
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentance_split_by_aoi_ocr_concate
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/5ah0pzpb)
# sentance_split_by_aoi_ocr_concate

This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7314
- Accuracy: 0.0955

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 25
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.1802        | 5.9676  | 276  | 2.9987          | 0.0978   |
| 0.8645        | 11.9351 | 552  | 3.4895          | 0.0982   |
| 0.6579        | 17.9027 | 828  | 3.6032          | 0.1016   |
| 0.595         | 23.8703 | 1104 | 3.6243          | 0.0982   |
| 0.5518        | 29.8378 | 1380 | 3.6076          | 0.0975   |
| 0.5298        | 35.8054 | 1656 | 3.6513          | 0.0971   |
| 0.5155        | 41.7730 | 1932 | 3.5870          | 0.0970   |
| 0.5058        | 47.7405 | 2208 | 3.6555          | 0.0966   |
| 0.4935        | 53.7081 | 2484 | 3.6736          | 0.0960   |
| 0.4928        | 59.6757 | 2760 | 3.7314          | 0.0957   |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1