Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,73 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
library_name: diffusers
|
4 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: diffusers
|
4 |
+
---
|
5 |
+
# flux-uncensored-nf4
|
6 |
+
|
7 |
+
## Summary
|
8 |
+
Flux base model merged with uncensored LoRA, quantized to NF4. This model is not for those looking for "safe" or watered-down outputs. It’s optimized for real-world use with fewer constraints and lower VRAM requirements, thanks to NF4 quantization.
|
9 |
+
|
10 |
+
## Specs
|
11 |
+
* Model: Flux base
|
12 |
+
* LoRA: Uncensored version, merged directly
|
13 |
+
* Quantization: NF4 format for speed and VRAM efficiency
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
Not so much for plug-and-play model, but pretty straight forward (script from sayak [https://github.com/huggingface/diffusers/issues/9165#issue-2462431761])
|
17 |
+
|
18 |
+
Please install pip install -U bitsandbytes to proceed.
|
19 |
+
```python
|
20 |
+
"""
|
21 |
+
Some bits are from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py
|
22 |
+
"""
|
23 |
+
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
from accelerate.utils import set_module_tensor_to_device, compute_module_sizes
|
26 |
+
from accelerate import init_empty_weights
|
27 |
+
from convert_nf4_flux import _replace_with_bnb_linear, create_quantized_param, check_quantized_param
|
28 |
+
from diffusers import FluxTransformer2DModel, FluxPipeline
|
29 |
+
import safetensors.torch
|
30 |
+
import gc
|
31 |
+
import torch
|
32 |
+
|
33 |
+
dtype = torch.bfloat16
|
34 |
+
is_torch_e4m3fn_available = hasattr(torch, "float8_e4m3fn")
|
35 |
+
ckpt_path = hf_hub_download("shauray/flux.1-dev-uncensored-nf4", filename="diffusion_pytorch_model.safetensors")
|
36 |
+
original_state_dict = safetensors.torch.load_file(ckpt_path)
|
37 |
+
|
38 |
+
with init_empty_weights():
|
39 |
+
config = FluxTransformer2DModel.load_config("shauray/flux.1-dev-uncensored-nf4")
|
40 |
+
model = FluxTransformer2DModel.from_config(config).to(dtype)
|
41 |
+
expected_state_dict_keys = list(model.state_dict().keys())
|
42 |
+
|
43 |
+
_replace_with_bnb_linear(model, "nf4")
|
44 |
+
|
45 |
+
for param_name, param in original_state_dict.items():
|
46 |
+
if param_name not in expected_state_dict_keys:
|
47 |
+
continue
|
48 |
+
|
49 |
+
is_param_float8_e4m3fn = is_torch_e4m3fn_available and param.dtype == torch.float8_e4m3fn
|
50 |
+
if torch.is_floating_point(param) and not is_param_float8_e4m3fn:
|
51 |
+
param = param.to(dtype)
|
52 |
+
|
53 |
+
if not check_quantized_param(model, param_name):
|
54 |
+
set_module_tensor_to_device(model, param_name, device=0, value=param)
|
55 |
+
else:
|
56 |
+
create_quantized_param(
|
57 |
+
model, param, param_name, target_device=0, state_dict=original_state_dict, pre_quantized=True
|
58 |
+
)
|
59 |
+
|
60 |
+
del original_state_dict
|
61 |
+
gc.collect()
|
62 |
+
|
63 |
+
print(compute_module_sizes(model)[""] / 1024 / 1204)
|
64 |
+
|
65 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/flux.1-dev", transformer=model, torch_dtype=dtype)
|
66 |
+
pipe.enable_model_cpu_offload()
|
67 |
+
|
68 |
+
prompt = "A mystic cat with a sign that says hello world!"
|
69 |
+
image = pipe(prompt, guidance_scale=3.5, num_inference_steps=50, generator=torch.manual_seed(0)).images[0]
|
70 |
+
image.save("flux-nf4-dev-loaded.png")
|
71 |
+
```
|
72 |
+
|
73 |
+
this README has what you'd need, it's a merge from [Uncensored LoRA on CivitAI]([https://civitai.com/models/875879/flux-lustlyai-uncensored-v1-nsfw-lora-with-male-and-female-nudity)
|