--- license: mit library_name: diffusers --- # flux-uncensored-nf4 ## Summary Flux base model merged with uncensored LoRA, quantized to NF4. This model is not for those looking for "safe" or watered-down outputs. It’s optimized for real-world use with fewer constraints and lower VRAM requirements, thanks to NF4 quantization. ## Specs * Model: Flux base * LoRA: Uncensored version, merged directly * Quantization: NF4 format for speed and VRAM efficiency ## Usage Not so much for plug-and-play model, but pretty straight forward (script from sayak [https://github.com/huggingface/diffusers/issues/9165#issue-2462431761]) Please install pip install -U bitsandbytes to proceed. ```python """ Some bits are from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py """ from huggingface_hub import hf_hub_download from accelerate.utils import set_module_tensor_to_device, compute_module_sizes from accelerate import init_empty_weights from convert_nf4_flux import _replace_with_bnb_linear, create_quantized_param, check_quantized_param from diffusers import FluxTransformer2DModel, FluxPipeline import safetensors.torch import gc import torch dtype = torch.bfloat16 is_torch_e4m3fn_available = hasattr(torch, "float8_e4m3fn") ckpt_path = hf_hub_download("shauray/flux.1-dev-uncensored-nf4", filename="diffusion_pytorch_model.safetensors") original_state_dict = safetensors.torch.load_file(ckpt_path) with init_empty_weights(): config = FluxTransformer2DModel.load_config("shauray/flux.1-dev-uncensored-nf4") model = FluxTransformer2DModel.from_config(config).to(dtype) expected_state_dict_keys = list(model.state_dict().keys()) _replace_with_bnb_linear(model, "nf4") for param_name, param in original_state_dict.items(): if param_name not in expected_state_dict_keys: continue is_param_float8_e4m3fn = is_torch_e4m3fn_available and param.dtype == torch.float8_e4m3fn if torch.is_floating_point(param) and not is_param_float8_e4m3fn: param = param.to(dtype) if not check_quantized_param(model, param_name): set_module_tensor_to_device(model, param_name, device=0, value=param) else: create_quantized_param( model, param, param_name, target_device=0, state_dict=original_state_dict, pre_quantized=True ) del original_state_dict gc.collect() print(compute_module_sizes(model)[""] / 1024 / 1204) pipe = FluxPipeline.from_pretrained("black-forest-labs/flux.1-dev", transformer=model, torch_dtype=dtype) pipe.enable_model_cpu_offload() prompt = "A mystic cat with a sign that says hello world!" image = pipe(prompt, guidance_scale=3.5, num_inference_steps=50, generator=torch.manual_seed(0)).images[0] image.save("flux-nf4-dev-loaded.png") ``` this README has what you'd need, it's a merge from [Uncensored LoRA on CivitAI]([https://civitai.com/models/875879/flux-lustlyai-uncensored-v1-nsfw-lora-with-male-and-female-nudity)