ppo-LunarLander-v2 / config.json
shenyichong's picture
first commit
f02525c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f625346d5a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f625346d630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f625346d6c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f625346d750>", "_build": "<function ActorCriticPolicy._build at 0x7f625346d7e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f625346d870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f625346d900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f625346d990>", "_predict": "<function ActorCriticPolicy._predict at 0x7f625346da20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f625346dab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f625346db40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f625346dbd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6253e77840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689030334149309536, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqaeb3SaYG7Ah1AvXtVzzsheMS8nnHCPAAAgD8AAIA/zcr6PHvmhrqty1ayAeKEKTDbDDrX460yAACAPwAAgD9mytc8j4YCuqC8HrSRy52vrTEmupCpqDMAAIA/AACAP7NATT2y+bk/zeAtPrVmnr6jRFw94W0pPQAAAAAAAAAANu9zvsecPz/i7CS+h0jQvoTSj75zJVQ9AAAAAAAAAAA9/ko/eGqcvhEBBT9eoM28vEUCvtZxiT4AAAAAAACAP3qMdD6U9Ck/M60TPtBsEb9+8Gs+b0YzuwAAAAAAAAAA/ZKLvoQA6j7i+II9tsPcvuUAaL6au1g9AAAAAAAAAAAzvIm8XDtquubJqrMMXDivo65au8tNtzMAAIA/AACAP7pfK76aq5M+D/GlPuUHx76aHX29dm1BOQAAAAAAAAAAsz9xPcMZf7qci5q4ogHpsnqhQTqJh7I3AACAPwAAgD8m3IC9EX2BPbXdlj5kN4++ANskPRbCAT4AAAAAAAAAAKDjCL6PwUY/QnUcO/t1377q6y2+PeZPPQAAAAAAAAAAWiCmvU83Pz02xnA+68Sjvl2gN7vAMU49AAAAAAAAAACasbU8zO6tP+au2j4ZDAS/Orv8u7Z/Kz0AAAAAAAAAADOj8bpck3c7PUlrPuXHe76iaJI97t65vgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDQ8EV32VWMAWyUS/+MAXSUR0CYmECXhOxjdX2UKGgGR0BzoUQGwA2iaAdNAQFoCEdAmJhNb5dnkHV9lChoBkdAb31Lns9jgGgHS+VoCEdAmJin2qT8pHV9lChoBkdAS9y4MF2V3WgHS6RoCEdAmJj9mL9/BnV9lChoBkdAcJ6pIMBp6GgHS95oCEdAmJlRNh3JP3V9lChoBkdAcRtoYekpJGgHS+loCEdAmJnBUWEbpHV9lChoBkdAb2W+IMz/ImgHS9toCEdAmJog7DEWI3V9lChoBkdAcAN/5ckdFWgHS9ZoCEdAmJrO2uxKQXV9lChoBkdAcYgtY0VJtmgHTQABaAhHQJiblW6shgV1fZQoaAZHQHH9vfO2RaJoB0vuaAhHQJib9/NJOFh1fZQoaAZHQELR3W4EwFloB0ueaAhHQJicLTrmhdt1fZQoaAZHQGzqoZ62OQ1oB0vVaAhHQJiff5wfhdd1fZQoaAZHQHDia6jFhodoB0vQaAhHQJifhtqHoHN1fZQoaAZHQHEd8eOn2qVoB0vXaAhHQJigbKs+3Yt1fZQoaAZHQHG4JQgs9SxoB0vdaAhHQJig2GahHsl1fZQoaAZHQG8hKqGUOd5oB0vsaAhHQJihghaC+UR1fZQoaAZHQHJo1yeZof1oB0vaaAhHQJihg2FWXC11fZQoaAZHQHIsWRzRx95oB0voaAhHQJihzM/yGzt1fZQoaAZHQHFr9u5z5oJoB0vbaAhHQJih9UhmoR91fZQoaAZHQG6kwwj+rENoB018AWgIR0CYopMXaakRdX2UKGgGR0BuQA0uUUwjaAdL7mgIR0CYo9wYcebNdX2UKGgGR0By9QuIyj59aAdL+mgIR0CYpUocaOxTdX2UKGgGR0Bx/81dgOSXaAdNHgFoCEdAmKV9pM6BAnV9lChoBkdAcenOD8LromgHS/FoCEdAmKXf1g6U7nV9lChoBkdAc2Y9Vmz0H2gHS+toCEdAmKZhisny/nV9lChoBkdAcVZMqjJuEWgHS75oCEdAmKl0ZeiSJXV9lChoBkdAb+l8R+SbIGgHS81oCEdAmKm6aw2VFHV9lChoBkdActm7E5yU92gHS+poCEdAmKo4eDFqBXV9lChoBkdAczijHXEqD2gHS/hoCEdAmKrzUI9kjHV9lChoBkdAcHRYa5wwTWgHS9poCEdAmKvQ80UGmnV9lChoBkdAcU3We6I3zmgHTQABaAhHQJitaziS7oV1fZQoaAZHQHEdzAWSEDhoB0v7aAhHQJitsO8TSLJ1fZQoaAZHQHNt1S4vvjRoB00HAWgIR0CYrcYbKifydX2UKGgGR0Bya+03Ov+waAdL/mgIR0CYrnGLUCq7dX2UKGgGR0BxZ4uM+/xlaAdL9GgIR0CYr1DWK/EgdX2UKGgGR0BxCtgH/tIDaAdLzWgIR0CYr4hz/6wddX2UKGgGR0BzcmDBdld1aAdL42gIR0CYsAFg2IfsdX2UKGgGR0ByqKLgn+hoaAdNBgFoCEdAmLG9nscABHV9lChoBkdAYx/60IC2dGgHTegDaAhHQJix/KwIMSd1fZQoaAZHQHEP0XHim2toB0v7aAhHQJiyKphnanJ1fZQoaAZHQG/TVJ+UhV5oB0vbaAhHQJiz3QgLZzx1fZQoaAZHQHHmDmjj7yhoB0vgaAhHQJi0jCSA6Ml1fZQoaAZHQHGGoDTz/ZNoB0v8aAhHQJi1Imois4l1fZQoaAZHQG+1YvnKW9loB0viaAhHQJi1TbzshPl1fZQoaAZHQG6Al10T101oB0vuaAhHQJi2jmeUY9B1fZQoaAZHQHEb4ZVGTcJoB0vjaAhHQJi3xhPTG5t1fZQoaAZHQHHQ0AYHgP5oB0vqaAhHQJi3xsrNGEx1fZQoaAZHQHDWo/Z/Tb5oB0vnaAhHQJi34TN+so51fZQoaAZHQHEe89SuQp5oB0vAaAhHQJi3/mig00p1fZQoaAZHQG81MZpBX0ZoB0vjaAhHQJi4yovSMLp1fZQoaAZHQHIE+wkgOjJoB00CAWgIR0CYuRbwBo25dX2UKGgGR0Bxkj5nDiwTaAdL82gIR0CYuaL/0dzXdX2UKGgGR0BwvW717IDHaAdL4WgIR0CYulvddmg8dX2UKGgGR0BwbTQID5j6aAdL6GgIR0CYuq5qdpZfdX2UKGgGR0BzOJ3PiT+vaAdL8mgIR0CYurS619fDdX2UKGgGR0ByKwgow22oaAdL72gIR0CYvFmUW2w3dX2UKGgGR0Bw346mwaBJaAdL6mgIR0CYvJKWcBludX2UKGgGR0BzEJPva11GaAdNCQFoCEdAmLyw3974SHV9lChoBkdAcIkK7qY7aWgHS+poCEdAmLyx0IToMnV9lChoBkdAb6hGgBcRlGgHS9NoCEdAmL2qDPGACnV9lChoBkdAclc9tdiUgWgHS91oCEdAmL3qClJpWXV9lChoBkdAcLLW8yvcJ2gHS9xoCEdAmL4IJVsDXHV9lChoBkdAcGOiUxEfDGgHS+poCEdAmL5EQsf7rXV9lChoBkdAcStNsWO6umgHS+BoCEdAmL7qQq7ROXV9lChoBkdAcXE6FM7EHmgHS/BoCEdAmL+qslsxf3V9lChoBkdAb30WCVbA12gHS+FoCEdAmMDq3iJfpnV9lChoBkdAbt/1jAi3X2gHS+JoCEdAmMD77bcoIHV9lChoBkdAOAXVoYekpWgHTegDaAhHQJjCnO2RaHN1fZQoaAZHQHMZ/+OwPiFoB0vOaAhHQJjCuCL/CIl1fZQoaAZHQHGR6Az544ZoB0vOaAhHQJjENlSS/0x1fZQoaAZHQHM6uNYKYzBoB0vXaAhHQJjEQLc9GI91fZQoaAZHQHGCi3solUpoB0vhaAhHQJjFUtBfKIV1fZQoaAZHQG9U+wTufEpoB0vIaAhHQJjFUiPhhph1fZQoaAZHQHPElzQu27ZoB0vwaAhHQJjFiMPz4Dd1fZQoaAZHQHKL1zdUKiRoB03vAWgIR0CYxZqdH2AYdX2UKGgGR0BJnJiqhlDnaAdLj2gIR0CYxbc1wYLtdX2UKGgGR0ByKS/k/8l5aAdNQQFoCEdAmMaMzImw7nV9lChoBkdAc5nv6TGHYmgHTdsBaAhHQJjH/8baRIV1fZQoaAZHQHB0jua4MF5oB0vUaAhHQJjICzeGfwt1fZQoaAZHQHGrskleF+NoB00BAWgIR0CYyBPCEYfodX2UKGgGR0BwG+e7L+xXaAdNdgFoCEdAmMgsyJsO5XV9lChoBkdAc0Du1ndwemgHS85oCEdAmMlRKQJXyXV9lChoBkdAcL+xJ/XoT2gHS9JoCEdAmMmMYqG1yHV9lChoBkdAcXPpS75EdGgHS+BoCEdAmMtYEOiFkHV9lChoBkdAcPWeRxLkCGgHS+RoCEdAmMt/Ru0kW3V9lChoBkdAbfO6H0se4mgHS9toCEdAmMxhB7eEZnV9lChoBkdAcsud3jdYXGgHS+VoCEdAmMx9wBHTZ3V9lChoBkdAcY966J66a2gHTRQCaAhHQJjMy39aUzN1fZQoaAZHQHM0VHOKO1hoB0vtaAhHQJjNINqgyuZ1fZQoaAZHQHF5xrnDBM1oB00DAWgIR0CYzacB2fTTdX2UKGgGR0Bq3hN21UlzaAdNnAJoCEdAmM6sDSw4bXV9lChoBkdAcJ5lP8AJcGgHS9doCEdAmM64V/MGHHV9lChoBkdAc3Sm+0w8GWgHTQ0BaAhHQJjO2iyprDZ1fZQoaAZHQHFcRKQJXyRoB0vfaAhHQJjO1wLmZE51fZQoaAZHQHB9isS00FdoB0vfaAhHQJjQFeVs1sN1fZQoaAZHQHMPN+w1R+BoB00tAWgIR0CY0NNXYDkmdX2UKGgGR0BzR1senyd4aAdNAwFoCEdAmNDgjps41nV9lChoBkdAceTdT5wfhmgHTTIBaAhHQJjRAZR8+id1fZQoaAZHQHELvtQbdadoB0vgaAhHQJjRqdmQKa51fZQoaAZHQG/TrGBFuvVoB0vSaAhHQJjSOsPrfLt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}