{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f88513b1b40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677078014575078696, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKG5/LwxPSY/NPUZPQpCmj9xugBAcebDP26RWD9Agcu95xkIv5vNc71aTYw/wCT5PtoMxL+MRdI9gJI/v5Sa2L9EUPS95eepPxUALD+QjV+/i2CsP06JOzyj0qI+JJilPuxjfT9tete/LdzKPvvXGj85Jf8+q61uP9IDwb7XVHM/beLYP6RETT96f0O+/HZjv3REOb9n5Tk+p0njP4HWwL4J5oC/lp0AQALJ873Hl0u/FRWXvua4D0CElMU+rJaTPwa8lj9/5F+/Y+bxP5HXGD7sY30/MBIYPy3cyj771xo/TLPtv2hdhL5v0jA/NJFrv/MOU7/hgiU9MjpEv87raz6StzW/qFgLPL3WLr9yCaO8quM6Pmbe2bjO8Z8/9ujQPEoZiL8jVuQ7fYcaP8OMBj1mjKs/6goeuuYKDL8Fisy87GN9PzASGD8t3Mo++9caPz5A4D9z8Hq/evVSPxb5BcDx7EG/hHlhwOneKD+6pwE/hEKHvlPtLMCxFpC+SjFTQOgIxr+oOxfA/H47P3ikxL8myLw//Vf7P8fKD0AQ4Oi/N2itPzHEA0Benw7AcTQ4QHpRgb9tete/sochwLCe07+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACxAKQ2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASY7FPQAAAADuTPu/AAAAAAhGwT0AAAAAk9j1PwAAAACFjJI9AAAAAGIu7D8AAAAAlOwRvgAAAADaCfa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmDb6tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgETM0j0AAAAAU5XwvwAAAAAYX8M9AAAAAPpZ+T8AAAAA9A25vQAAAAAS0eM/AAAAAOV+aLwAAAAATWT5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFPuZzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBv9pO7AAAAAEOv7r8AAAAAtnypPQAAAAB5sOA/AAAAAIeyjz0AAAAAKAr/PwAAAAC90t47AAAAAFo8AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSPik2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhuI1vQAAAACgg9y/AAAAAFJIPj0AAAAA/oD2PwAAAABv4Ky9AAAAAEdz9D8AAAAAEbHZvQAAAACPaPq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJE1g6FM7EKMAWyUTegDjAF0lEdAqpcZvR7Z4HV9lChoBkdAjr7IVEd/8WgHTegDaAhHQKqbJ4qPOpt1fZQoaAZHQJBXwxREWqNoB03oA2gIR0Cqn+EhRqGldX2UKGgGR0CQUWWkadc0aAdN6ANoCEdAqqZTkuHvdHV9lChoBkdAlClPYnOSn2gHTegDaAhHQKqmoWuX/o91fZQoaAZHQJAUcK8cuJ1oB03oA2gIR0CqqsQDmr80dX2UKGgGR0CLhPkH2RJVaAdN6ANoCEdAqq4kgSvkinV9lChoBkdAkLBahQFcIWgHTegDaAhHQKqywU7CBPN1fZQoaAZHQJGyJxgiNbVoB03oA2gIR0Cqswo371qWdX2UKGgGR0CQCR2qT8pDaAdN6ANoCEdAqrcYlfJFLHV9lChoBkdAkeEwv+OwPmgHTegDaAhHQKq7DmI0qH51fZQoaAZHQIiYGwNb1RNoB03oA2gIR0CqwjfHHWBjdX2UKGgGR0COrTHvttygaAdN6ANoCEdAqsKJYkmhNHV9lChoBkdAkkjg6uGKymgHTegDaAhHQKrGrkGRmsh1fZQoaAZHQJJ4dHPNVzZoB03oA2gIR0Cqyg8nNPgvdX2UKGgGR0CRSO4xUNrkaAdN6ANoCEdAqs6acI7eVXV9lChoBkdAj4XXI2fkFWgHTegDaAhHQKrO4hzNliB1fZQoaAZHQJK0pEofCANoB03oA2gIR0Cq0uFl9SdfdX2UKGgGR0CQ1LUBXCCSaAdN6ANoCEdAqtY/Jq7AcnV9lChoBkdAkF8LDhtLtmgHTegDaAhHQKrdMcENe+p1fZQoaAZHQIwEun4wh4doB03oA2gIR0Cq3aeSbH6udX2UKGgGR0CRtk+W4Vh1aAdN6ANoCEdAquJjBGhEjXV9lChoBkdAkUTO+7Dl5mgHTegDaAhHQKrlz2Jzkp91fZQoaAZHQIw1136hxo9oB03oA2gIR0Cq6moSL61tdX2UKGgGR0CSJZ2ETQE7aAdN6ANoCEdAquqyWkadc3V9lChoBkdAkg4OOwPiDWgHTegDaAhHQKruupG4I8h1fZQoaAZHQJHfknc+JP9oB03oA2gIR0Cq8iAJkXk6dX2UKGgGR0COU7eIEbHZaAdN6ANoCEdAqvhO3trsSnV9lChoBkdAkhxCfYjB22gHTegDaAhHQKr4yRf4REp1fZQoaAZHQJNOIhdMTOBoB03oA2gIR0Cq/lQC0WuYdX2UKGgGR0CVzAFNL128aAdN6ANoCEdAqwGyaG5+Y3V9lChoBkdAjxLLa24NJGgHTegDaAhHQKsGU3cYZVJ1fZQoaAZHQJY0VpBX0XhoB03oA2gIR0CrBppzkp7UdX2UKGgGR0CSRsyNn5BUaAdN6ANoCEdAqwqxPTG5tnV9lChoBkdAlwPjQRf4RGgHTegDaAhHQKsOHuQZGax1fZQoaAZHQJRD9MyrPt5oB03oA2gIR0CrE6rPt2LYdX2UKGgGR0CUa5vduYQbaAdN6ANoCEdAqxQd6iTMaHV9lChoBkdAg9dPatcOb2gHTegDaAhHQKsaKswtapx1fZQoaAZHQJRSqIEbHZNoB03oA2gIR0CrHYRUNrj6dX2UKGgGR0CVIxm0VrRCaAdN6ANoCEdAqyJHMjeKsXV9lChoBkdAkS7jd1uBMGgHTegDaAhHQKsijpfQa751fZQoaAZHQJRB2o0hvBJoB03oA2gIR0CrJo+fh/AkdX2UKGgGR0CQu9fSQYDUaAdN6ANoCEdAqynoDLbHqHV9lChoBkdAkWHz67/XG2gHTegDaAhHQKsuzQ1rIo51fZQoaAZHQJHc+HO8kD9oB03oA2gIR0CrLzYukDZEdX2UKGgGR0CNGdzjFQ2uaAdN6ANoCEdAqzVRbSqlxnV9lChoBkdAkMlzr3TNMWgHTegDaAhHQKs5RZeRgZ11fZQoaAZHQIsEalabF0hoB03oA2gIR0CrPdDtG/etdX2UKGgGR0CSywZKnNxEaAdN6ANoCEdAqz4ZmseXA3V9lChoBkdAlMu29lEqlWgHTegDaAhHQKtCLiEQGwB1fZQoaAZHQJH8ZhfBvaVoB03oA2gIR0CrRYlCb+cZdX2UKGgGR0CYv2Mbm2b5aAdN6ANoCEdAq0off642CXV9lChoBkdAlh2fag261GgHTegDaAhHQKtKbX+VC5V1fZQoaAZHQJWllmkFfRhoB03oA2gIR0CrUA56Uqx1dX2UKGgGR0CVH72IwdsBaAdN6ANoCEdAq1TQLThHb3V9lChoBkdAlPKEk4WDYmgHTegDaAhHQKtZbLMcIZ91fZQoaAZHQJdh/8hs67xoB03oA2gIR0CrWbIScslLdX2UKGgGR0CSH8cPe54GaAdN6ANoCEdAq12t2icoY3V9lChoBkdAlpnOrlvIfmgHTegDaAhHQKthA/Zdv891fZQoaAZHQJcf3AuZkTZoB03oA2gIR0CrZZA/TspodX2UKGgGR0CV43kEcKgJaAdN6ANoCEdAq2XWsq8UVXV9lChoBkdAl+NjUutfX2gHTegDaAhHQKtqhsenyd51fZQoaAZHQJcpYXwb2lFoB03oA2gIR0Crb7nSF49pdX2UKGgGR0CUo4QIUrTZaAdN6ANoCEdAq3T6kyk9EHV9lChoBkdAk0D/V/c32mgHTegDaAhHQKt1QvFFUhp1fZQoaAZHQJKG4cbR4QloB03oA2gIR0CreWo8ZDRddX2UKGgGR0CUMVIeHSF5aAdN6ANoCEdAq3zdZLZi/nV9lChoBkdAljXFuzhP02gHTegDaAhHQKuBdFDv3Jx1fZQoaAZHQJeE8q8UVSJoB03oA2gIR0Crgb9deIEbdX2UKGgGR0CXFOW2PT5PaAdN6ANoCEdAq4Xwuh9LH3V9lChoBkdAkvz0EHMUy2gHTegDaAhHQKuK5uWKMvR1fZQoaAZHQJTYf+R5kbxoB03oA2gIR0CrkMUa6z3RdX2UKGgGR0CYeRORDCxeaAdN6ANoCEdAq5ELJQtSRHV9lChoBkdAlwsV4C6pYWgHTegDaAhHQKuWgCNCJGh1fZQoaAZHQJWs0Ygq3E1oB03oA2gIR0Crm2mPYFq0dX2UKGgGR0CWwLTiKiwjaAdN6ANoCEdAq5/3003wTnV9lChoBkdAkScnIlt0m2gHTegDaAhHQKugPWzWwvB1fZQoaAZHQJdGYZl4C6poB03oA2gIR0CrpTsMI/qxdX2UKGgGR0CXC7fXwsoVaAdN6ANoCEdAq6piVyFPBXV9lChoBkdAkTUhkAggYGgHTegDaAhHQKuva4BFNL11fZQoaAZHQJpMfIeYD1ZoB03oA2gIR0Crr7DdYW+HdX2UKGgGR0CZjDUyYXwcaAdN6ANoCEdAq7PAGQjlgnV9lChoBkdAlv3U1Muez2gHTegDaAhHQKu3I6gdwNt1fZQoaAZHQJjcTR+jM3ZoB03oA2gIR0Cru8C8FpwkdX2UKGgGR0CXjAdtEXtTaAdN6ANoCEdAq7wMp5NXYHV9lChoBkdAlB0g+IMz/WgHTegDaAhHQKvAdXOGCZp1fZQoaAZHQJhQ2smv4dpoB03oA2gIR0CrxV2gnMMadX2UKGgGR0CUa//4ZdfLaAdN6ANoCEdAq8sWnTAnD3V9lChoBkdAly3w5zYEn2gHTegDaAhHQKvLXTTfBN51fZQoaAZHQJOSm1XvH95oB03oA2gIR0Crz1gdn004dX2UKGgGR0CVtnM5OrQxaAdN6ANoCEdAq9KqJGe+VXV9lChoBkdAk+715KODJ2gHTegDaAhHQKvXRqKxcFB1fZQoaAZHQJb0OEytV7xoB03oA2gIR0Cr14/bj94vdX2UKGgGR0CZJ/lFtsN2aAdN6ANoCEdAq9uhQgs9S3V9lChoBkdAl8MqYRdyDWgHTegDaAhHQKvgL8DSw4d1fZQoaAZHQJQRqcjJMg5oB03oA2gIR0Cr5rRl6JIldX2UKGgGR0CXODXnQpnZaAdN6ANoCEdAq+b9tALRbHV9lChoBkdAlvh2GucME2gHTegDaAhHQKvrITtb9qF1fZQoaAZHQJidwBIWgvloB03oA2gIR0Cr7nhppN9IdX2UKGgGR0CU2B3rleWwaAdN6ANoCEdAq/MgDoyKvXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}