--- language: - zh tags: - bert - pytorch - zh - ner license: apache-2.0 pipeline_tag: token-classification --- # BERT for Chinese Named Entity Recognition(bert4ner) Model 中文实体识别模型 `bert4ner-base-chinese` evaluate PEOPLE(人民日报) test data: The overall performance of BERT on people **test**: | | Accuracy | Recall | F1 | | ------------ | ------------------ | ------------------ | ------------------ | | BertSoftmax | 0.9425 | 0.9627 | 0.9525 | 在PEOPLE的测试集上达到接近SOTA水平。 BertSoftmax的网络结构(原生BERT): ![arch](bert.png) ## Usage 本项目开源在实体识别项目:[nerpy](https://github.com/shibing624/nerpy),可支持bert4ner模型,通过如下命令调用: ```shell >>> from nerpy import NERModel >>> model = NERModel("bert", "shibing624/bert4ner-base-chinese") >>> predictions, raw_outputs, entities = model.predict(["常建良,男,1963年出生,工科学士,高级工程师"], split_on_space=False) entities: [('常建良', 'PER'), ('1963年', 'TIME')] ``` 模型文件组成: ``` bert4ner-base-chinese ├── config.json ├── model_args.json ├── pytorch_model.bin ├── special_tokens_map.json ├── tokenizer_config.json └── vocab.txt ``` ## Usage (HuggingFace Transformers) Without [nerpy](https://github.com/shibing624/nerpy), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the bio tag to get the entity words. Install package: ``` pip install transformers seqeval ``` ```python import os import torch from transformers import AutoTokenizer, AutoModelForTokenClassification from seqeval.metrics.sequence_labeling import get_entities os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("shibing624/bert4ner-base-chinese") model = AutoModelForTokenClassification.from_pretrained("shibing624/bert4ner-base-chinese") label_list = ['I-ORG', 'B-LOC', 'O', 'B-ORG', 'I-LOC', 'I-PER', 'B-TIME', 'I-TIME', 'B-PER'] sentence = "王宏伟来自北京,是个警察,喜欢去王府井游玩儿。" def get_entity(sentence): tokens = tokenizer.tokenize(sentence) inputs = tokenizer.encode(sentence, return_tensors="pt") with torch.no_grad(): outputs = model(inputs).logits predictions = torch.argmax(outputs, dim=2) char_tags = [(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].numpy())][1:-1] print(sentence) print(char_tags) pred_labels = [i[1] for i in char_tags] entities = [] line_entities = get_entities(pred_labels) for i in line_entities: word = sentence[i[1]: i[2] + 1] entity_type = i[0] entities.append((word, entity_type)) print("Sentence entity:") print(entities) get_entity(sentence) ``` output: ```shell 王宏伟来自北京,是个警察,喜欢去王府井游玩儿。 [('王', 'B-PER'), ('宏', 'I-PER'), ('伟', 'I-PER'), ('来', 'O'), ('自', 'O'), ('北', 'B-LOC'), ('京', 'I-LOC'), (',', 'O'), ('是', 'O'), ('个', 'O'), ('警', 'O'), ('察', 'O'), (',', 'O'), ('喜', 'O'), ('欢', 'O'), ('去', 'O'), ('王', 'B-LOC'), ('府', 'I-LOC'), ('井', 'I-LOC'), ('游', 'O'), ('玩', 'O'), ('儿', 'O'), ('。', 'O')] Sentence entity: [('王宏伟', 'PER'), ('北京', 'LOC'), ('王府井', 'LOC')] ``` ### 训练数据集 #### 中文实体识别数据集 | 数据集 | 语料 | 下载链接 | 文件大小 | | :------- | :--------- | :---------: | :---------: | | **`CNER中文实体识别数据集`** | CNER(12万字) | [CNER github](https://github.com/shibing624/nerpy/tree/main/examples/data/cner)| 1.1MB | | **`PEOPLE中文实体识别数据集`** | 人民日报数据集(200万字) | [PEOPLE github](https://github.com/shibing624/nerpy/tree/main/examples/data/people)| 12.8MB | CNER中文实体识别数据集,数据格式: ```text 美 B-LOC 国 I-LOC 的 O 华 B-PER 莱 I-PER 士 I-PER 我 O 跟 O 他 O ``` 如果需要训练bert4ner,请参考[https://github.com/shibing624/nerpy/tree/main/examples](https://github.com/shibing624/nerpy/tree/main/examples) ## Citation ```latex @software{nerpy, author = {Xu Ming}, title = {nerpy: Named Entity Recognition toolkit}, year = {2022}, url = {https://github.com/shibing624/nerpy}, } ```