File size: 6,302 Bytes
b2d8e3b
5cee80e
b2d8e3b
 
 
a880cc1
 
5cee80e
 
 
 
 
 
 
b2d8e3b
 
cb791fe
4a65218
b2d8e3b
0c60c1e
b2d8e3b
9954ba7
0c60c1e
 
 
b2d8e3b
1823f8a
e98fec3
404c1dd
b2d8e3b
 
 
0c60c1e
b2d8e3b
 
 
 
 
 
 
 
 
 
 
 
4a65218
 
b2d8e3b
4a65218
b2d8e3b
 
9820460
b2d8e3b
 
 
a3383e2
b2d8e3b
4a65218
9954ba7
 
4a65218
 
9954ba7
4a65218
9954ba7
 
06088e1
4a65218
 
 
 
9954ba7
 
 
 
 
 
 
4a65218
 
b2d8e3b
 
4a65218
 
 
 
 
 
 
 
 
 
 
 
b2d8e3b
4a65218
 
 
 
 
 
 
 
 
b2d8e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122281f
 
b2d8e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a65218
b2d8e3b
 
5cee80e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
language:
- zh
tags:
- bert
- pytorch
- zh
license: apache-2.0
datasets:
- shibing624/CSC
library_name: transformers
pipeline_tag: text2text-generation
widget:
  - text: 少先队员因该为老人让坐
---

# MacBERT for Chinese Spelling Correction(macbert4csc) Model
中文拼写纠错模型

`macbert4csc-base-chinese` evaluate SIGHAN2015 test data:

- Char Level:     precision:0.9372, recall:0.8640, f1:0.8991
- Sentence Level: precision:0.8264, recall:0.7366, f1:0.7789

由于训练使用的数据使用了SIGHAN2015的训练集(复现paper),在SIGHAN2015的测试集上达到SOTA水平。

模型结构,魔改于softmaskedbert:

![arch](arch1.png)

## Usage

本项目开源在中文文本纠错项目:[pycorrector](https://github.com/shibing624/pycorrector),可支持macbert4csc模型,通过如下命令调用:

```python
from pycorrector.macbert.macbert_corrector import MacBertCorrector

nlp = MacBertCorrector("shibing624/macbert4csc-base-chinese").macbert_correct

i = nlp('今天新情很好')
print(i)
```

当然,你也可使用官方的huggingface/transformers调用:

*Please use 'Bert' related functions to load this model!*

```python
import operator
import torch
from transformers import BertTokenizer, BertForMaskedLM
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = BertTokenizer.from_pretrained("shibing624/macbert4csc-base-chinese")
model = BertForMaskedLM.from_pretrained("shibing624/macbert4csc-base-chinese")
model.to(device)

texts = ["今天新情很好", "你找到你最喜欢的工作,我也很高心。"]
with torch.no_grad():
    outputs = model(**tokenizer(texts, padding=True, return_tensors='pt').to(device))

def get_errors(corrected_text, origin_text):
    sub_details = []
    for i, ori_char in enumerate(origin_text):
        if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']:
            # add unk word
            corrected_text = corrected_text[:i] + ori_char + corrected_text[i:]
            continue
        if i >= len(corrected_text):
            continue
        if ori_char != corrected_text[i]:
            if ori_char.lower() == corrected_text[i]:
                # pass english upper char
                corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
                continue
            sub_details.append((ori_char, corrected_text[i], i, i + 1))
    sub_details = sorted(sub_details, key=operator.itemgetter(2))
    return corrected_text, sub_details

result = []
for ids, text in zip(outputs.logits, texts):
    _text = tokenizer.decode(torch.argmax(ids, dim=-1), skip_special_tokens=True).replace(' ', '')
    corrected_text = _text[:len(text)]
    corrected_text, details = get_errors(corrected_text, text)
    print(text, ' => ', corrected_text, details)
    result.append((corrected_text, details))
print(result)
```

output:
```shell
今天新情很好  =>  今天心情很好 [('新', '心', 2, 3)]
你找到你最喜欢的工作,我也很高心。  =>  你找到你最喜欢的工作,我也很高兴。 [('心', '兴', 15, 16)]
```

模型文件组成:
```
macbert4csc-base-chinese
    ├── config.json
    ├── added_tokens.json
    ├── pytorch_model.bin
    ├── special_tokens_map.json
    ├── tokenizer_config.json
    └── vocab.txt
```

### 训练数据集
#### SIGHAN+Wang271K中文纠错数据集


| 数据集 | 语料 | 下载链接 | 压缩包大小 |
| :------- | :--------- | :---------: | :---------: |
| **`SIGHAN+Wang271K中文纠错数据集`** | SIGHAN+Wang271K(27万条) | [百度网盘(密码01b9)](https://pan.baidu.com/s/1BV5tr9eONZCI0wERFvr0gQ)| 106M |
| **`原始SIGHAN数据集`** | SIGHAN13 14 15 | [官方csc.html](http://nlp.ee.ncu.edu.tw/resource/csc.html)| 339K |
| **`原始Wang271K数据集`** | Wang271K | [Automatic-Corpus-Generation dimmywang提供](https://github.com/wdimmy/Automatic-Corpus-Generation/blob/master/corpus/train.sgml)| 93M |


SIGHAN+Wang271K中文纠错数据集,数据格式:
```json
[
    {
        "id": "B2-4029-3",
        "original_text": "晚间会听到嗓音,白天的时候大家都不会太在意,但是在睡觉的时候这嗓音成为大家的恶梦。",
        "wrong_ids": [
            5,
            31
        ],
        "correct_text": "晚间会听到噪音,白天的时候大家都不会太在意,但是在睡觉的时候这噪音成为大家的恶梦。"
    },
]
```

```shell
macbert4csc
    ├── config.json
    ├── pytorch_model.bin
    ├── special_tokens_map.json
    ├── tokenizer_config.json
    └── vocab.txt
```

如果需要训练macbert4csc,请参考[https://github.com/shibing624/pycorrector/tree/master/pycorrector/macbert](https://github.com/shibing624/pycorrector/tree/master/pycorrector/macbert)


### About MacBERT
**MacBERT** is an improved BERT with novel **M**LM **a**s **c**orrection pre-training task, which mitigates the discrepancy of pre-training and fine-tuning.

Here is an example of our pre-training task.

| task  | Example       |
| -------------- | ----------------- |
| **Original Sentence**  | we use a language model to predict the probability of the next word. |
|  **MLM** | we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word . |
| **Whole word masking**   | we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word . |
| **N-gram masking** | we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word . |
| **MLM as correction** | we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word . |

Except for the new pre-training task, we also incorporate the following techniques.

- Whole Word Masking (WWM)
- N-gram masking
- Sentence-Order Prediction (SOP)

**Note that our MacBERT can be directly replaced with the original BERT as there is no differences in the main neural architecture.**

For more technical details, please check our paper: [Revisiting Pre-trained Models for Chinese Natural Language Processing](https://arxiv.org/abs/2004.13922)


## Citation

```latex
@software{pycorrector,
  author = {Xu Ming},
  title = {pycorrector: Text Error Correction Tool},
  year = {2021},
  url = {https://github.com/shibing624/pycorrector},
}
```