zhangxiaolong commited on
Commit
99e39c9
1 Parent(s): 250c708

First model init

Browse files
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data3/bytedance/users/booommer/megatron/mp/",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 28,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 4,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.46.0",
25
+ "use_cache": false,
26
+ "use_mrope": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.46.0"
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:232e230035b978ae474a3f2c8e70503f02032d59233740ac2156b2aac53007b9
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa423cb45fb48595c4785d7a000a0c5f8d6998c05634b2c5539909c2e6ab4ab6
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c60ba04ede1dede2a40a69dd199b5730882cad98d525001b3388a5b599656ef
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feaa4d44fc742162ddaf92b6444025dc192f995639b25e37ffad691388ca491f
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null,
207
+ "use_fast": true
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,3750 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9133519673188562,
5
+ "eval_steps": 500,
6
+ "global_step": 531,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0017200602021070737,
13
+ "grad_norm": 9.863033294677734,
14
+ "learning_rate": 1.0000000000000001e-07,
15
+ "loss": 46.5684,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0034401204042141475,
20
+ "grad_norm": 9.501362800598145,
21
+ "learning_rate": 2.0000000000000002e-07,
22
+ "loss": 46.7594,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.005160180606321221,
27
+ "grad_norm": 10.306024551391602,
28
+ "learning_rate": 3.0000000000000004e-07,
29
+ "loss": 47.7285,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.006880240808428295,
34
+ "grad_norm": 10.35928726196289,
35
+ "learning_rate": 4.0000000000000003e-07,
36
+ "loss": 46.2416,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.008600301010535369,
41
+ "grad_norm": 10.284590721130371,
42
+ "learning_rate": 5.000000000000001e-07,
43
+ "loss": 46.4638,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.010320361212642442,
48
+ "grad_norm": 9.508557319641113,
49
+ "learning_rate": 6.000000000000001e-07,
50
+ "loss": 47.0967,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.012040421414749517,
55
+ "grad_norm": 9.53107738494873,
56
+ "learning_rate": 7.000000000000001e-07,
57
+ "loss": 46.8945,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.01376048161685659,
62
+ "grad_norm": 8.917387008666992,
63
+ "learning_rate": 8.000000000000001e-07,
64
+ "loss": 46.0318,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.015480541818963663,
69
+ "grad_norm": 9.046576499938965,
70
+ "learning_rate": 9.000000000000001e-07,
71
+ "loss": 46.7626,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.017200602021070738,
76
+ "grad_norm": 8.346121788024902,
77
+ "learning_rate": 1.0000000000000002e-06,
78
+ "loss": 46.4023,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.01892066222317781,
83
+ "grad_norm": 7.368544578552246,
84
+ "learning_rate": 1.1e-06,
85
+ "loss": 46.9599,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.020640722425284884,
90
+ "grad_norm": 7.151632308959961,
91
+ "learning_rate": 1.2000000000000002e-06,
92
+ "loss": 46.8859,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.022360782627391957,
97
+ "grad_norm": 6.858343124389648,
98
+ "learning_rate": 1.3e-06,
99
+ "loss": 47.0505,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.024080842829499034,
104
+ "grad_norm": 6.4683918952941895,
105
+ "learning_rate": 1.4000000000000001e-06,
106
+ "loss": 46.6439,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.025800903031606107,
111
+ "grad_norm": 8.405121803283691,
112
+ "learning_rate": 1.5e-06,
113
+ "loss": 46.8736,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.02752096323371318,
118
+ "grad_norm": 10.191279411315918,
119
+ "learning_rate": 1.6000000000000001e-06,
120
+ "loss": 46.2945,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.029241023435820253,
125
+ "grad_norm": 10.24738597869873,
126
+ "learning_rate": 1.7000000000000002e-06,
127
+ "loss": 46.0618,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.030961083637927326,
132
+ "grad_norm": 9.236139297485352,
133
+ "learning_rate": 1.8000000000000001e-06,
134
+ "loss": 47.0773,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.0326811438400344,
139
+ "grad_norm": 8.437068939208984,
140
+ "learning_rate": 1.9000000000000002e-06,
141
+ "loss": 46.6797,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.034401204042141476,
146
+ "grad_norm": 8.35542106628418,
147
+ "learning_rate": 2.0000000000000003e-06,
148
+ "loss": 46.8348,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.03612126424424855,
153
+ "grad_norm": 9.210644721984863,
154
+ "learning_rate": 2.1000000000000002e-06,
155
+ "loss": 46.7521,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.03784132444635562,
160
+ "grad_norm": 9.216105461120605,
161
+ "learning_rate": 2.2e-06,
162
+ "loss": 46.4541,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.0395613846484627,
167
+ "grad_norm": 8.33311939239502,
168
+ "learning_rate": 2.3000000000000004e-06,
169
+ "loss": 46.7192,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.04128144485056977,
174
+ "grad_norm": 7.9267449378967285,
175
+ "learning_rate": 2.4000000000000003e-06,
176
+ "loss": 46.7559,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.043001505052676844,
181
+ "grad_norm": 7.363073348999023,
182
+ "learning_rate": 2.5e-06,
183
+ "loss": 45.9578,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.044721565254783914,
188
+ "grad_norm": 7.073836326599121,
189
+ "learning_rate": 2.6e-06,
190
+ "loss": 45.9155,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.04644162545689099,
195
+ "grad_norm": 7.0409088134765625,
196
+ "learning_rate": 2.7000000000000004e-06,
197
+ "loss": 46.6551,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.04816168565899807,
202
+ "grad_norm": 6.685385227203369,
203
+ "learning_rate": 2.8000000000000003e-06,
204
+ "loss": 46.3889,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.04988174586110514,
209
+ "grad_norm": 6.540524959564209,
210
+ "learning_rate": 2.9e-06,
211
+ "loss": 47.0662,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.05160180606321221,
216
+ "grad_norm": 6.627730846405029,
217
+ "learning_rate": 3e-06,
218
+ "loss": 46.101,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.05332186626531928,
223
+ "grad_norm": 7.054595470428467,
224
+ "learning_rate": 3.1000000000000004e-06,
225
+ "loss": 46.7379,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.05504192646742636,
230
+ "grad_norm": 6.73618221282959,
231
+ "learning_rate": 3.2000000000000003e-06,
232
+ "loss": 46.3172,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.056761986669533436,
237
+ "grad_norm": 5.943539619445801,
238
+ "learning_rate": 3.3000000000000006e-06,
239
+ "loss": 47.0245,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.058482046871640506,
244
+ "grad_norm": 6.056912899017334,
245
+ "learning_rate": 3.4000000000000005e-06,
246
+ "loss": 46.0208,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.06020210707374758,
251
+ "grad_norm": 5.7798309326171875,
252
+ "learning_rate": 3.5e-06,
253
+ "loss": 46.0746,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.06192216727585465,
258
+ "grad_norm": 5.896692276000977,
259
+ "learning_rate": 3.6000000000000003e-06,
260
+ "loss": 46.4911,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.06364222747796174,
265
+ "grad_norm": 5.496098518371582,
266
+ "learning_rate": 3.7e-06,
267
+ "loss": 45.9957,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.0653622876800688,
272
+ "grad_norm": 5.253308296203613,
273
+ "learning_rate": 3.8000000000000005e-06,
274
+ "loss": 45.7145,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.06708234788217587,
279
+ "grad_norm": 5.340756416320801,
280
+ "learning_rate": 3.900000000000001e-06,
281
+ "loss": 46.7068,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.06880240808428295,
286
+ "grad_norm": 5.312371730804443,
287
+ "learning_rate": 4.000000000000001e-06,
288
+ "loss": 46.4172,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.07052246828639003,
293
+ "grad_norm": 5.484511375427246,
294
+ "learning_rate": 4.1e-06,
295
+ "loss": 45.6433,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.0722425284884971,
300
+ "grad_norm": 5.260024547576904,
301
+ "learning_rate": 4.2000000000000004e-06,
302
+ "loss": 46.1259,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.07396258869060417,
307
+ "grad_norm": 5.4440999031066895,
308
+ "learning_rate": 4.3e-06,
309
+ "loss": 46.2947,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.07568264889271124,
314
+ "grad_norm": 5.153471946716309,
315
+ "learning_rate": 4.4e-06,
316
+ "loss": 46.2882,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.07740270909481832,
321
+ "grad_norm": 5.6796488761901855,
322
+ "learning_rate": 4.5e-06,
323
+ "loss": 46.3314,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.0791227692969254,
328
+ "grad_norm": 5.253461837768555,
329
+ "learning_rate": 4.600000000000001e-06,
330
+ "loss": 46.4205,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.08084282949903247,
335
+ "grad_norm": 5.475714683532715,
336
+ "learning_rate": 4.7e-06,
337
+ "loss": 45.9359,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.08256288970113954,
342
+ "grad_norm": 5.880488872528076,
343
+ "learning_rate": 4.800000000000001e-06,
344
+ "loss": 46.0665,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.08428294990324661,
349
+ "grad_norm": 5.69149923324585,
350
+ "learning_rate": 4.9000000000000005e-06,
351
+ "loss": 45.8811,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.08600301010535369,
356
+ "grad_norm": 5.086974143981934,
357
+ "learning_rate": 5e-06,
358
+ "loss": 46.1759,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.08772307030746077,
363
+ "grad_norm": 5.902041435241699,
364
+ "learning_rate": 5.1e-06,
365
+ "loss": 46.4326,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.08944313050956783,
370
+ "grad_norm": 5.740163803100586,
371
+ "learning_rate": 5.2e-06,
372
+ "loss": 45.607,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.0911631907116749,
377
+ "grad_norm": 5.547687530517578,
378
+ "learning_rate": 5.300000000000001e-06,
379
+ "loss": 45.8864,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.09288325091378198,
384
+ "grad_norm": 6.20143461227417,
385
+ "learning_rate": 5.400000000000001e-06,
386
+ "loss": 45.7776,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.09460331111588906,
391
+ "grad_norm": 5.544395446777344,
392
+ "learning_rate": 5.500000000000001e-06,
393
+ "loss": 46.3334,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.09632337131799613,
398
+ "grad_norm": 5.583694934844971,
399
+ "learning_rate": 5.600000000000001e-06,
400
+ "loss": 45.5733,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.0980434315201032,
405
+ "grad_norm": 5.751343250274658,
406
+ "learning_rate": 5.7e-06,
407
+ "loss": 45.2805,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.09976349172221027,
412
+ "grad_norm": 6.024663925170898,
413
+ "learning_rate": 5.8e-06,
414
+ "loss": 45.6569,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.10148355192431735,
419
+ "grad_norm": 5.834673881530762,
420
+ "learning_rate": 5.9e-06,
421
+ "loss": 45.7854,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.10320361212642443,
426
+ "grad_norm": 6.796127796173096,
427
+ "learning_rate": 6e-06,
428
+ "loss": 46.4184,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.1049236723285315,
433
+ "grad_norm": 6.303890705108643,
434
+ "learning_rate": 6.1e-06,
435
+ "loss": 46.0877,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.10664373253063857,
440
+ "grad_norm": 6.320569038391113,
441
+ "learning_rate": 6.200000000000001e-06,
442
+ "loss": 45.8802,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.10836379273274564,
447
+ "grad_norm": 6.015869617462158,
448
+ "learning_rate": 6.300000000000001e-06,
449
+ "loss": 45.6733,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.11008385293485272,
454
+ "grad_norm": 6.314846515655518,
455
+ "learning_rate": 6.4000000000000006e-06,
456
+ "loss": 45.8531,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.1118039131369598,
461
+ "grad_norm": 6.106888294219971,
462
+ "learning_rate": 6.5000000000000004e-06,
463
+ "loss": 45.2966,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.11352397333906687,
468
+ "grad_norm": 6.093003273010254,
469
+ "learning_rate": 6.600000000000001e-06,
470
+ "loss": 46.0552,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.11524403354117393,
475
+ "grad_norm": 5.634897708892822,
476
+ "learning_rate": 6.700000000000001e-06,
477
+ "loss": 45.3367,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.11696409374328101,
482
+ "grad_norm": 6.261721134185791,
483
+ "learning_rate": 6.800000000000001e-06,
484
+ "loss": 45.7655,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.11868415394538809,
489
+ "grad_norm": 5.926329135894775,
490
+ "learning_rate": 6.9e-06,
491
+ "loss": 45.1391,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.12040421414749516,
496
+ "grad_norm": 5.887923717498779,
497
+ "learning_rate": 7e-06,
498
+ "loss": 45.43,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.12212427434960224,
503
+ "grad_norm": 5.79194450378418,
504
+ "learning_rate": 7.100000000000001e-06,
505
+ "loss": 45.763,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.1238443345517093,
510
+ "grad_norm": 6.2670722007751465,
511
+ "learning_rate": 7.2000000000000005e-06,
512
+ "loss": 45.137,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.1255643947538164,
517
+ "grad_norm": 5.60247278213501,
518
+ "learning_rate": 7.3e-06,
519
+ "loss": 45.7123,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.12728445495592347,
524
+ "grad_norm": 7.346188545227051,
525
+ "learning_rate": 7.4e-06,
526
+ "loss": 45.5004,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.12900451515803052,
531
+ "grad_norm": 6.078243255615234,
532
+ "learning_rate": 7.500000000000001e-06,
533
+ "loss": 45.5731,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.1307245753601376,
538
+ "grad_norm": 7.248181343078613,
539
+ "learning_rate": 7.600000000000001e-06,
540
+ "loss": 45.7506,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.13244463556224467,
545
+ "grad_norm": 5.837612628936768,
546
+ "learning_rate": 7.7e-06,
547
+ "loss": 45.7486,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.13416469576435175,
552
+ "grad_norm": 7.661535739898682,
553
+ "learning_rate": 7.800000000000002e-06,
554
+ "loss": 45.5743,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.13588475596645883,
559
+ "grad_norm": 5.925168991088867,
560
+ "learning_rate": 7.9e-06,
561
+ "loss": 45.0878,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.1376048161685659,
566
+ "grad_norm": 6.47566032409668,
567
+ "learning_rate": 8.000000000000001e-06,
568
+ "loss": 45.4567,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.13932487637067298,
573
+ "grad_norm": 5.9641852378845215,
574
+ "learning_rate": 8.1e-06,
575
+ "loss": 45.0619,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.14104493657278006,
580
+ "grad_norm": 6.4052324295043945,
581
+ "learning_rate": 8.2e-06,
582
+ "loss": 45.9375,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.14276499677488713,
587
+ "grad_norm": 6.149839401245117,
588
+ "learning_rate": 8.3e-06,
589
+ "loss": 45.5695,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.1444850569769942,
594
+ "grad_norm": 6.546520233154297,
595
+ "learning_rate": 8.400000000000001e-06,
596
+ "loss": 45.8453,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.14620511717910126,
601
+ "grad_norm": 6.221002578735352,
602
+ "learning_rate": 8.5e-06,
603
+ "loss": 44.9717,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.14792517738120833,
608
+ "grad_norm": 6.772427558898926,
609
+ "learning_rate": 8.6e-06,
610
+ "loss": 45.8218,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.1496452375833154,
615
+ "grad_norm": 7.193835258483887,
616
+ "learning_rate": 8.700000000000001e-06,
617
+ "loss": 45.4445,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.1513652977854225,
622
+ "grad_norm": 6.1274895668029785,
623
+ "learning_rate": 8.8e-06,
624
+ "loss": 45.127,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.15308535798752956,
629
+ "grad_norm": 7.984500885009766,
630
+ "learning_rate": 8.900000000000001e-06,
631
+ "loss": 44.9928,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.15480541818963664,
636
+ "grad_norm": 6.346322059631348,
637
+ "learning_rate": 9e-06,
638
+ "loss": 45.4616,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.15652547839174372,
643
+ "grad_norm": 7.460362911224365,
644
+ "learning_rate": 9.100000000000001e-06,
645
+ "loss": 45.2488,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.1582455385938508,
650
+ "grad_norm": 7.510838508605957,
651
+ "learning_rate": 9.200000000000002e-06,
652
+ "loss": 45.0087,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.15996559879595787,
657
+ "grad_norm": 6.567174911499023,
658
+ "learning_rate": 9.3e-06,
659
+ "loss": 44.3216,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.16168565899806495,
664
+ "grad_norm": 8.357160568237305,
665
+ "learning_rate": 9.4e-06,
666
+ "loss": 45.1102,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.163405719200172,
671
+ "grad_norm": 6.190718650817871,
672
+ "learning_rate": 9.5e-06,
673
+ "loss": 45.0187,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.16512577940227907,
678
+ "grad_norm": 6.47848653793335,
679
+ "learning_rate": 9.600000000000001e-06,
680
+ "loss": 45.9968,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.16684583960438615,
685
+ "grad_norm": 6.271050453186035,
686
+ "learning_rate": 9.7e-06,
687
+ "loss": 45.6172,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.16856589980649322,
692
+ "grad_norm": 7.013180255889893,
693
+ "learning_rate": 9.800000000000001e-06,
694
+ "loss": 45.1628,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.1702859600086003,
699
+ "grad_norm": 6.151601314544678,
700
+ "learning_rate": 9.9e-06,
701
+ "loss": 45.3331,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.17200602021070738,
706
+ "grad_norm": 6.522064685821533,
707
+ "learning_rate": 1e-05,
708
+ "loss": 45.01,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.17372608041281445,
713
+ "grad_norm": 6.936015605926514,
714
+ "learning_rate": 9.999990859614876e-06,
715
+ "loss": 44.7838,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.17544614061492153,
720
+ "grad_norm": 6.696622371673584,
721
+ "learning_rate": 9.99996343849292e-06,
722
+ "loss": 44.4096,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.1771662008170286,
727
+ "grad_norm": 6.770718574523926,
728
+ "learning_rate": 9.999917736734387e-06,
729
+ "loss": 44.6306,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.17888626101913566,
734
+ "grad_norm": 8.121861457824707,
735
+ "learning_rate": 9.999853754506375e-06,
736
+ "loss": 45.3421,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.18060632122124273,
741
+ "grad_norm": 7.101470947265625,
742
+ "learning_rate": 9.999771492042807e-06,
743
+ "loss": 45.415,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.1823263814233498,
748
+ "grad_norm": 8.22966194152832,
749
+ "learning_rate": 9.99967094964445e-06,
750
+ "loss": 45.3149,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.18404644162545689,
755
+ "grad_norm": 10.975841522216797,
756
+ "learning_rate": 9.9995521276789e-06,
757
+ "loss": 45.2939,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.18576650182756396,
762
+ "grad_norm": 7.771969795227051,
763
+ "learning_rate": 9.999415026580592e-06,
764
+ "loss": 45.2433,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.18748656202967104,
769
+ "grad_norm": 10.387533187866211,
770
+ "learning_rate": 9.999259646850787e-06,
771
+ "loss": 45.2594,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.18920662223177812,
776
+ "grad_norm": 8.546263694763184,
777
+ "learning_rate": 9.999085989057578e-06,
778
+ "loss": 45.0587,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.1909266824338852,
783
+ "grad_norm": 9.245797157287598,
784
+ "learning_rate": 9.998894053835883e-06,
785
+ "loss": 45.2273,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.19264674263599227,
790
+ "grad_norm": 9.295574188232422,
791
+ "learning_rate": 9.998683841887449e-06,
792
+ "loss": 45.5471,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.19436680283809935,
797
+ "grad_norm": 8.650074005126953,
798
+ "learning_rate": 9.99845535398084e-06,
799
+ "loss": 45.2802,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.1960868630402064,
804
+ "grad_norm": 11.102032661437988,
805
+ "learning_rate": 9.998208590951449e-06,
806
+ "loss": 45.3066,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.19780692324231347,
811
+ "grad_norm": 6.938677787780762,
812
+ "learning_rate": 9.99794355370147e-06,
813
+ "loss": 45.1454,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.19952698344442055,
818
+ "grad_norm": 16.639892578125,
819
+ "learning_rate": 9.997660243199928e-06,
820
+ "loss": 45.6125,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.20124704364652762,
825
+ "grad_norm": 11.0328369140625,
826
+ "learning_rate": 9.99735866048265e-06,
827
+ "loss": 45.4087,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.2029671038486347,
832
+ "grad_norm": 13.419515609741211,
833
+ "learning_rate": 9.997038806652264e-06,
834
+ "loss": 45.8139,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.20468716405074178,
839
+ "grad_norm": 13.69460678100586,
840
+ "learning_rate": 9.996700682878206e-06,
841
+ "loss": 45.304,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.20640722425284885,
846
+ "grad_norm": 7.643240928649902,
847
+ "learning_rate": 9.996344290396713e-06,
848
+ "loss": 45.1699,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.20812728445495593,
853
+ "grad_norm": 9.692140579223633,
854
+ "learning_rate": 9.995969630510805e-06,
855
+ "loss": 44.7309,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.209847344657063,
860
+ "grad_norm": 7.550359725952148,
861
+ "learning_rate": 9.995576704590299e-06,
862
+ "loss": 44.6299,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.21156740485917008,
867
+ "grad_norm": 6.425361156463623,
868
+ "learning_rate": 9.995165514071793e-06,
869
+ "loss": 44.8296,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.21328746506127713,
874
+ "grad_norm": 8.089837074279785,
875
+ "learning_rate": 9.994736060458665e-06,
876
+ "loss": 45.2622,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.2150075252633842,
881
+ "grad_norm": 6.491065979003906,
882
+ "learning_rate": 9.994288345321059e-06,
883
+ "loss": 44.3288,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.21672758546549128,
888
+ "grad_norm": 5.423704147338867,
889
+ "learning_rate": 9.993822370295892e-06,
890
+ "loss": 44.7233,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.21844764566759836,
895
+ "grad_norm": 7.901766777038574,
896
+ "learning_rate": 9.993338137086841e-06,
897
+ "loss": 45.0159,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.22016770586970544,
902
+ "grad_norm": 7.50944709777832,
903
+ "learning_rate": 9.992835647464339e-06,
904
+ "loss": 44.8785,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.22188776607181251,
909
+ "grad_norm": 7.400681972503662,
910
+ "learning_rate": 9.992314903265561e-06,
911
+ "loss": 45.3053,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.2236078262739196,
916
+ "grad_norm": 8.214972496032715,
917
+ "learning_rate": 9.991775906394434e-06,
918
+ "loss": 44.8066,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.22532788647602667,
923
+ "grad_norm": 7.00181770324707,
924
+ "learning_rate": 9.991218658821609e-06,
925
+ "loss": 44.5013,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.22704794667813374,
930
+ "grad_norm": 6.811863422393799,
931
+ "learning_rate": 9.990643162584467e-06,
932
+ "loss": 44.7327,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.22876800688024082,
937
+ "grad_norm": 8.760518074035645,
938
+ "learning_rate": 9.99004941978712e-06,
939
+ "loss": 44.6706,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.23048806708234787,
944
+ "grad_norm": 7.204503536224365,
945
+ "learning_rate": 9.989437432600373e-06,
946
+ "loss": 44.8113,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.23220812728445495,
951
+ "grad_norm": 8.635207176208496,
952
+ "learning_rate": 9.988807203261752e-06,
953
+ "loss": 45.3002,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.23392818748656202,
958
+ "grad_norm": 7.5076823234558105,
959
+ "learning_rate": 9.988158734075468e-06,
960
+ "loss": 44.919,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.2356482476886691,
965
+ "grad_norm": 8.329002380371094,
966
+ "learning_rate": 9.98749202741243e-06,
967
+ "loss": 44.9676,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.23736830789077618,
972
+ "grad_norm": 7.5155158042907715,
973
+ "learning_rate": 9.986807085710213e-06,
974
+ "loss": 45.167,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.23908836809288325,
979
+ "grad_norm": 8.341093063354492,
980
+ "learning_rate": 9.986103911473075e-06,
981
+ "loss": 45.1884,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.24080842829499033,
986
+ "grad_norm": 7.4146342277526855,
987
+ "learning_rate": 9.985382507271928e-06,
988
+ "loss": 44.8973,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.2425284884970974,
993
+ "grad_norm": 8.28603458404541,
994
+ "learning_rate": 9.984642875744338e-06,
995
+ "loss": 44.6793,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.24424854869920448,
1000
+ "grad_norm": 7.7817583084106445,
1001
+ "learning_rate": 9.983885019594506e-06,
1002
+ "loss": 44.7361,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.24596860890131156,
1007
+ "grad_norm": 8.71711254119873,
1008
+ "learning_rate": 9.983108941593277e-06,
1009
+ "loss": 44.514,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.2476886691034186,
1014
+ "grad_norm": 8.746935844421387,
1015
+ "learning_rate": 9.982314644578111e-06,
1016
+ "loss": 45.4915,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.24940872930552568,
1021
+ "grad_norm": 8.616266250610352,
1022
+ "learning_rate": 9.981502131453077e-06,
1023
+ "loss": 44.4955,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.2511287895076328,
1028
+ "grad_norm": 8.73255443572998,
1029
+ "learning_rate": 9.980671405188852e-06,
1030
+ "loss": 44.7087,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.25284884970973986,
1035
+ "grad_norm": 7.063310623168945,
1036
+ "learning_rate": 9.979822468822696e-06,
1037
+ "loss": 44.7221,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.25456890991184694,
1042
+ "grad_norm": 8.635971069335938,
1043
+ "learning_rate": 9.978955325458453e-06,
1044
+ "loss": 44.5993,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.25628897011395396,
1049
+ "grad_norm": 7.771418571472168,
1050
+ "learning_rate": 9.978069978266534e-06,
1051
+ "loss": 45.1399,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.25800903031606104,
1056
+ "grad_norm": 9.317761421203613,
1057
+ "learning_rate": 9.9771664304839e-06,
1058
+ "loss": 44.8672,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.2597290905181681,
1063
+ "grad_norm": 8.102662086486816,
1064
+ "learning_rate": 9.976244685414065e-06,
1065
+ "loss": 45.4121,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.2614491507202752,
1070
+ "grad_norm": 12.453920364379883,
1071
+ "learning_rate": 9.97530474642707e-06,
1072
+ "loss": 44.6091,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.26316921092238227,
1077
+ "grad_norm": 9.156878471374512,
1078
+ "learning_rate": 9.974346616959476e-06,
1079
+ "loss": 45.1213,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.26488927112448934,
1084
+ "grad_norm": 11.89529037475586,
1085
+ "learning_rate": 9.973370300514353e-06,
1086
+ "loss": 44.5162,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.2666093313265964,
1091
+ "grad_norm": 9.946409225463867,
1092
+ "learning_rate": 9.972375800661264e-06,
1093
+ "loss": 44.106,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.2683293915287035,
1098
+ "grad_norm": 10.854037284851074,
1099
+ "learning_rate": 9.971363121036252e-06,
1100
+ "loss": 44.9188,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.2700494517308106,
1105
+ "grad_norm": 9.196579933166504,
1106
+ "learning_rate": 9.970332265341833e-06,
1107
+ "loss": 44.6235,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.27176951193291765,
1112
+ "grad_norm": 11.79194164276123,
1113
+ "learning_rate": 9.969283237346973e-06,
1114
+ "loss": 45.7572,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.2734895721350247,
1119
+ "grad_norm": 7.789967060089111,
1120
+ "learning_rate": 9.968216040887078e-06,
1121
+ "loss": 44.8069,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.2752096323371318,
1126
+ "grad_norm": 10.540818214416504,
1127
+ "learning_rate": 9.967130679863984e-06,
1128
+ "loss": 44.7341,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.2769296925392389,
1133
+ "grad_norm": 7.4835405349731445,
1134
+ "learning_rate": 9.966027158245939e-06,
1135
+ "loss": 45.4445,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.27864975274134596,
1140
+ "grad_norm": 9.472413063049316,
1141
+ "learning_rate": 9.964905480067585e-06,
1142
+ "loss": 44.5498,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.28036981294345303,
1147
+ "grad_norm": 9.155404090881348,
1148
+ "learning_rate": 9.963765649429954e-06,
1149
+ "loss": 44.3932,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.2820898731455601,
1154
+ "grad_norm": 8.14942455291748,
1155
+ "learning_rate": 9.962607670500442e-06,
1156
+ "loss": 44.5368,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.2838099333476672,
1161
+ "grad_norm": 10.103939056396484,
1162
+ "learning_rate": 9.961431547512794e-06,
1163
+ "loss": 44.1877,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.28552999354977426,
1168
+ "grad_norm": 7.972369194030762,
1169
+ "learning_rate": 9.960237284767103e-06,
1170
+ "loss": 44.775,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.28725005375188134,
1175
+ "grad_norm": 13.627598762512207,
1176
+ "learning_rate": 9.959024886629772e-06,
1177
+ "loss": 44.3529,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.2889701139539884,
1182
+ "grad_norm": 9.467161178588867,
1183
+ "learning_rate": 9.957794357533518e-06,
1184
+ "loss": 44.7574,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.29069017415609544,
1189
+ "grad_norm": 12.242958068847656,
1190
+ "learning_rate": 9.956545701977347e-06,
1191
+ "loss": 44.5439,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.2924102343582025,
1196
+ "grad_norm": 10.142478942871094,
1197
+ "learning_rate": 9.955278924526532e-06,
1198
+ "loss": 44.4951,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.2941302945603096,
1203
+ "grad_norm": 12.610379219055176,
1204
+ "learning_rate": 9.95399402981261e-06,
1205
+ "loss": 44.7777,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.29585035476241667,
1210
+ "grad_norm": 9.542120933532715,
1211
+ "learning_rate": 9.952691022533352e-06,
1212
+ "loss": 44.5877,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.29757041496452374,
1217
+ "grad_norm": 13.538004875183105,
1218
+ "learning_rate": 9.951369907452752e-06,
1219
+ "loss": 44.4161,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.2992904751666308,
1224
+ "grad_norm": 11.80547046661377,
1225
+ "learning_rate": 9.950030689401014e-06,
1226
+ "loss": 44.8214,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.3010105353687379,
1231
+ "grad_norm": 11.983033180236816,
1232
+ "learning_rate": 9.948673373274523e-06,
1233
+ "loss": 44.7073,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.302730595570845,
1238
+ "grad_norm": 10.844096183776855,
1239
+ "learning_rate": 9.947297964035837e-06,
1240
+ "loss": 44.4097,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.30445065577295205,
1245
+ "grad_norm": 11.820161819458008,
1246
+ "learning_rate": 9.94590446671366e-06,
1247
+ "loss": 44.7555,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.3061707159750591,
1252
+ "grad_norm": 11.587363243103027,
1253
+ "learning_rate": 9.94449288640284e-06,
1254
+ "loss": 44.2532,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.3078907761771662,
1259
+ "grad_norm": 10.775352478027344,
1260
+ "learning_rate": 9.943063228264327e-06,
1261
+ "loss": 44.8222,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.3096108363792733,
1266
+ "grad_norm": 12.077004432678223,
1267
+ "learning_rate": 9.941615497525172e-06,
1268
+ "loss": 45.0694,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.31133089658138036,
1273
+ "grad_norm": 9.174921035766602,
1274
+ "learning_rate": 9.940149699478502e-06,
1275
+ "loss": 44.4424,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.31305095678348743,
1280
+ "grad_norm": 9.949912071228027,
1281
+ "learning_rate": 9.938665839483503e-06,
1282
+ "loss": 44.82,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.3147710169855945,
1287
+ "grad_norm": 10.341442108154297,
1288
+ "learning_rate": 9.937163922965394e-06,
1289
+ "loss": 43.993,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.3164910771877016,
1294
+ "grad_norm": 7.373370170593262,
1295
+ "learning_rate": 9.93564395541541e-06,
1296
+ "loss": 44.6727,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.31821113738980866,
1301
+ "grad_norm": 11.212616920471191,
1302
+ "learning_rate": 9.93410594239079e-06,
1303
+ "loss": 44.3283,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.31993119759191574,
1308
+ "grad_norm": 8.05331802368164,
1309
+ "learning_rate": 9.932549889514747e-06,
1310
+ "loss": 44.6646,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.3216512577940228,
1315
+ "grad_norm": 11.395249366760254,
1316
+ "learning_rate": 9.930975802476448e-06,
1317
+ "loss": 43.9711,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.3233713179961299,
1322
+ "grad_norm": 7.730330944061279,
1323
+ "learning_rate": 9.929383687030999e-06,
1324
+ "loss": 45.2283,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.3250913781982369,
1329
+ "grad_norm": 11.927477836608887,
1330
+ "learning_rate": 9.927773548999419e-06,
1331
+ "loss": 44.723,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.326811438400344,
1336
+ "grad_norm": 8.933055877685547,
1337
+ "learning_rate": 9.92614539426862e-06,
1338
+ "loss": 44.5058,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.32853149860245107,
1343
+ "grad_norm": 13.985485076904297,
1344
+ "learning_rate": 9.924499228791387e-06,
1345
+ "loss": 44.8917,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.33025155880455814,
1350
+ "grad_norm": 13.561887741088867,
1351
+ "learning_rate": 9.922835058586353e-06,
1352
+ "loss": 44.6659,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.3319716190066652,
1357
+ "grad_norm": 8.802722930908203,
1358
+ "learning_rate": 9.921152889737985e-06,
1359
+ "loss": 43.9996,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.3336916792087723,
1364
+ "grad_norm": 10.387024879455566,
1365
+ "learning_rate": 9.919452728396548e-06,
1366
+ "loss": 44.7691,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.3354117394108794,
1371
+ "grad_norm": 8.743358612060547,
1372
+ "learning_rate": 9.917734580778094e-06,
1373
+ "loss": 45.2034,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.33713179961298645,
1378
+ "grad_norm": 7.972978591918945,
1379
+ "learning_rate": 9.915998453164435e-06,
1380
+ "loss": 45.5303,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.3388518598150935,
1385
+ "grad_norm": 8.630827903747559,
1386
+ "learning_rate": 9.914244351903122e-06,
1387
+ "loss": 44.7464,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.3405719200172006,
1392
+ "grad_norm": 6.4518609046936035,
1393
+ "learning_rate": 9.912472283407421e-06,
1394
+ "loss": 44.2976,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.3422919802193077,
1399
+ "grad_norm": 8.886955261230469,
1400
+ "learning_rate": 9.910682254156284e-06,
1401
+ "loss": 44.8556,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.34401204042141476,
1406
+ "grad_norm": 7.261415004730225,
1407
+ "learning_rate": 9.908874270694337e-06,
1408
+ "loss": 44.466,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.34573210062352183,
1413
+ "grad_norm": 8.031500816345215,
1414
+ "learning_rate": 9.907048339631843e-06,
1415
+ "loss": 44.4753,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.3474521608256289,
1420
+ "grad_norm": 7.2853569984436035,
1421
+ "learning_rate": 9.905204467644688e-06,
1422
+ "loss": 45.0669,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.349172221027736,
1427
+ "grad_norm": 8.290436744689941,
1428
+ "learning_rate": 9.903342661474355e-06,
1429
+ "loss": 44.7901,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.35089228122984306,
1434
+ "grad_norm": 9.512991905212402,
1435
+ "learning_rate": 9.901462927927891e-06,
1436
+ "loss": 44.7863,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.35261234143195014,
1441
+ "grad_norm": 8.04033374786377,
1442
+ "learning_rate": 9.899565273877892e-06,
1443
+ "loss": 44.9776,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.3543324016340572,
1448
+ "grad_norm": 11.140141487121582,
1449
+ "learning_rate": 9.897649706262474e-06,
1450
+ "loss": 45.1048,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.3560524618361643,
1455
+ "grad_norm": 8.036794662475586,
1456
+ "learning_rate": 9.895716232085247e-06,
1457
+ "loss": 44.763,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.3577725220382713,
1462
+ "grad_norm": 11.508170127868652,
1463
+ "learning_rate": 9.89376485841529e-06,
1464
+ "loss": 44.7094,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.3594925822403784,
1469
+ "grad_norm": 8.577386856079102,
1470
+ "learning_rate": 9.891795592387127e-06,
1471
+ "loss": 44.5892,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.36121264244248547,
1476
+ "grad_norm": 11.701868057250977,
1477
+ "learning_rate": 9.889808441200697e-06,
1478
+ "loss": 44.4664,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.36293270264459254,
1483
+ "grad_norm": 7.955048561096191,
1484
+ "learning_rate": 9.887803412121331e-06,
1485
+ "loss": 44.5424,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.3646527628466996,
1490
+ "grad_norm": 11.340240478515625,
1491
+ "learning_rate": 9.885780512479725e-06,
1492
+ "loss": 44.3322,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.3663728230488067,
1497
+ "grad_norm": 8.020219802856445,
1498
+ "learning_rate": 9.88373974967191e-06,
1499
+ "loss": 44.2046,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.36809288325091377,
1504
+ "grad_norm": 10.230839729309082,
1505
+ "learning_rate": 9.881681131159232e-06,
1506
+ "loss": 44.2038,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.36981294345302085,
1511
+ "grad_norm": 8.711820602416992,
1512
+ "learning_rate": 9.879604664468315e-06,
1513
+ "loss": 44.0065,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.3715330036551279,
1518
+ "grad_norm": 10.792113304138184,
1519
+ "learning_rate": 9.877510357191042e-06,
1520
+ "loss": 44.3272,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.373253063857235,
1525
+ "grad_norm": 8.520330429077148,
1526
+ "learning_rate": 9.875398216984521e-06,
1527
+ "loss": 44.403,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.3749731240593421,
1532
+ "grad_norm": 12.095443725585938,
1533
+ "learning_rate": 9.873268251571065e-06,
1534
+ "loss": 44.8801,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.37669318426144915,
1539
+ "grad_norm": 10.553284645080566,
1540
+ "learning_rate": 9.871120468738156e-06,
1541
+ "loss": 44.1855,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.37841324446355623,
1546
+ "grad_norm": 10.677011489868164,
1547
+ "learning_rate": 9.868954876338414e-06,
1548
+ "loss": 44.9765,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.3801333046656633,
1553
+ "grad_norm": 10.681044578552246,
1554
+ "learning_rate": 9.866771482289585e-06,
1555
+ "loss": 44.3767,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.3818533648677704,
1560
+ "grad_norm": 8.905034065246582,
1561
+ "learning_rate": 9.86457029457449e-06,
1562
+ "loss": 44.5735,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.38357342506987746,
1567
+ "grad_norm": 11.448368072509766,
1568
+ "learning_rate": 9.86235132124101e-06,
1569
+ "loss": 44.3242,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.38529348527198454,
1574
+ "grad_norm": 8.515959739685059,
1575
+ "learning_rate": 9.860114570402055e-06,
1576
+ "loss": 45.0004,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.3870135454740916,
1581
+ "grad_norm": 11.419853210449219,
1582
+ "learning_rate": 9.85786005023553e-06,
1583
+ "loss": 44.7329,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.3887336056761987,
1588
+ "grad_norm": 10.274301528930664,
1589
+ "learning_rate": 9.855587768984308e-06,
1590
+ "loss": 44.5693,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.39045366587830577,
1595
+ "grad_norm": 9.408884048461914,
1596
+ "learning_rate": 9.8532977349562e-06,
1597
+ "loss": 44.2397,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.3921737260804128,
1602
+ "grad_norm": 8.234622955322266,
1603
+ "learning_rate": 9.850989956523922e-06,
1604
+ "loss": 44.3023,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.39389378628251986,
1609
+ "grad_norm": 10.358318328857422,
1610
+ "learning_rate": 9.848664442125068e-06,
1611
+ "loss": 44.6614,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.39561384648462694,
1616
+ "grad_norm": 9.553954124450684,
1617
+ "learning_rate": 9.846321200262079e-06,
1618
+ "loss": 44.8496,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.397333906686734,
1623
+ "grad_norm": 9.689641952514648,
1624
+ "learning_rate": 9.843960239502205e-06,
1625
+ "loss": 44.1763,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.3990539668888411,
1630
+ "grad_norm": 8.881220817565918,
1631
+ "learning_rate": 9.841581568477483e-06,
1632
+ "loss": 44.5679,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.40077402709094817,
1637
+ "grad_norm": 8.874262809753418,
1638
+ "learning_rate": 9.839185195884702e-06,
1639
+ "loss": 45.0497,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.40249408729305525,
1644
+ "grad_norm": 8.762188911437988,
1645
+ "learning_rate": 9.836771130485367e-06,
1646
+ "loss": 44.415,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.4042141474951623,
1651
+ "grad_norm": 7.233129501342773,
1652
+ "learning_rate": 9.834339381105676e-06,
1653
+ "loss": 44.4637,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.4059342076972694,
1658
+ "grad_norm": 10.540146827697754,
1659
+ "learning_rate": 9.831889956636478e-06,
1660
+ "loss": 44.525,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.4076542678993765,
1665
+ "grad_norm": 5.345295429229736,
1666
+ "learning_rate": 9.829422866033246e-06,
1667
+ "loss": 43.6553,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.40937432810148355,
1672
+ "grad_norm": 9.131731033325195,
1673
+ "learning_rate": 9.826938118316044e-06,
1674
+ "loss": 44.2395,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.41109438830359063,
1679
+ "grad_norm": 6.4219560623168945,
1680
+ "learning_rate": 9.82443572256949e-06,
1681
+ "loss": 44.541,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.4128144485056977,
1686
+ "grad_norm": 7.843993663787842,
1687
+ "learning_rate": 9.821915687942729e-06,
1688
+ "loss": 44.6975,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.4145345087078048,
1693
+ "grad_norm": 7.926616668701172,
1694
+ "learning_rate": 9.8193780236494e-06,
1695
+ "loss": 43.983,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.41625456890991186,
1700
+ "grad_norm": 7.5367045402526855,
1701
+ "learning_rate": 9.81682273896759e-06,
1702
+ "loss": 43.9646,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.41797462911201894,
1707
+ "grad_norm": 10.298775672912598,
1708
+ "learning_rate": 9.814249843239816e-06,
1709
+ "loss": 44.0679,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.419694689314126,
1714
+ "grad_norm": 8.142918586730957,
1715
+ "learning_rate": 9.811659345872979e-06,
1716
+ "loss": 44.9597,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.4214147495162331,
1721
+ "grad_norm": 11.297587394714355,
1722
+ "learning_rate": 9.809051256338338e-06,
1723
+ "loss": 44.3569,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.42313480971834017,
1728
+ "grad_norm": 8.743409156799316,
1729
+ "learning_rate": 9.806425584171468e-06,
1730
+ "loss": 43.6217,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.42485486992044724,
1735
+ "grad_norm": 9.554738998413086,
1736
+ "learning_rate": 9.803782338972235e-06,
1737
+ "loss": 44.3762,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.42657493012255426,
1742
+ "grad_norm": 8.766114234924316,
1743
+ "learning_rate": 9.801121530404746e-06,
1744
+ "loss": 44.1824,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.42829499032466134,
1749
+ "grad_norm": 8.465466499328613,
1750
+ "learning_rate": 9.798443168197332e-06,
1751
+ "loss": 44.0283,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.4300150505267684,
1756
+ "grad_norm": 8.999267578125,
1757
+ "learning_rate": 9.795747262142494e-06,
1758
+ "loss": 44.1171,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.4317351107288755,
1763
+ "grad_norm": 6.678277492523193,
1764
+ "learning_rate": 9.79303382209688e-06,
1765
+ "loss": 44.7172,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.43345517093098257,
1770
+ "grad_norm": 9.430837631225586,
1771
+ "learning_rate": 9.790302857981247e-06,
1772
+ "loss": 44.3632,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.43517523113308965,
1777
+ "grad_norm": 6.532567501068115,
1778
+ "learning_rate": 9.787554379780417e-06,
1779
+ "loss": 44.2348,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.4368952913351967,
1784
+ "grad_norm": 9.008966445922852,
1785
+ "learning_rate": 9.784788397543254e-06,
1786
+ "loss": 43.9189,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.4386153515373038,
1791
+ "grad_norm": 7.171030521392822,
1792
+ "learning_rate": 9.782004921382612e-06,
1793
+ "loss": 44.719,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.4403354117394109,
1798
+ "grad_norm": 8.457947731018066,
1799
+ "learning_rate": 9.77920396147531e-06,
1800
+ "loss": 44.3203,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.44205547194151795,
1805
+ "grad_norm": 8.303704261779785,
1806
+ "learning_rate": 9.77638552806209e-06,
1807
+ "loss": 44.6251,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.44377553214362503,
1812
+ "grad_norm": 7.793144702911377,
1813
+ "learning_rate": 9.773549631447576e-06,
1814
+ "loss": 44.4527,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.4454955923457321,
1819
+ "grad_norm": 9.074666976928711,
1820
+ "learning_rate": 9.770696282000245e-06,
1821
+ "loss": 44.4602,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.4472156525478392,
1826
+ "grad_norm": 7.790366172790527,
1827
+ "learning_rate": 9.767825490152381e-06,
1828
+ "loss": 44.0525,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.44893571274994626,
1833
+ "grad_norm": 6.790820598602295,
1834
+ "learning_rate": 9.764937266400042e-06,
1835
+ "loss": 44.3677,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.45065577295205334,
1840
+ "grad_norm": 7.48856782913208,
1841
+ "learning_rate": 9.76203162130302e-06,
1842
+ "loss": 44.281,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.4523758331541604,
1847
+ "grad_norm": 6.4276814460754395,
1848
+ "learning_rate": 9.759108565484796e-06,
1849
+ "loss": 44.5151,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.4540958933562675,
1854
+ "grad_norm": 7.4707350730896,
1855
+ "learning_rate": 9.756168109632519e-06,
1856
+ "loss": 44.4653,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.45581595355837456,
1861
+ "grad_norm": 6.78653621673584,
1862
+ "learning_rate": 9.753210264496943e-06,
1863
+ "loss": 45.1088,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.45753601376048164,
1868
+ "grad_norm": 6.732356548309326,
1869
+ "learning_rate": 9.75023504089241e-06,
1870
+ "loss": 44.3737,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.4592560739625887,
1875
+ "grad_norm": 6.069101810455322,
1876
+ "learning_rate": 9.747242449696794e-06,
1877
+ "loss": 44.5619,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.46097613416469574,
1882
+ "grad_norm": 6.123370170593262,
1883
+ "learning_rate": 9.74423250185147e-06,
1884
+ "loss": 44.3021,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.4626961943668028,
1889
+ "grad_norm": 6.104144096374512,
1890
+ "learning_rate": 9.74120520836127e-06,
1891
+ "loss": 44.2148,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.4644162545689099,
1896
+ "grad_norm": 8.752744674682617,
1897
+ "learning_rate": 9.738160580294444e-06,
1898
+ "loss": 44.6205,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.46613631477101697,
1903
+ "grad_norm": 7.354405879974365,
1904
+ "learning_rate": 9.735098628782624e-06,
1905
+ "loss": 44.459,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.46785637497312405,
1910
+ "grad_norm": 8.801732063293457,
1911
+ "learning_rate": 9.732019365020778e-06,
1912
+ "loss": 44.635,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.4695764351752311,
1917
+ "grad_norm": 7.110331058502197,
1918
+ "learning_rate": 9.728922800267162e-06,
1919
+ "loss": 44.3402,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.4712964953773382,
1924
+ "grad_norm": 8.147953033447266,
1925
+ "learning_rate": 9.7258089458433e-06,
1926
+ "loss": 44.6291,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.4730165555794453,
1931
+ "grad_norm": 7.08845853805542,
1932
+ "learning_rate": 9.722677813133921e-06,
1933
+ "loss": 45.0577,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.47473661578155235,
1938
+ "grad_norm": 6.4095025062561035,
1939
+ "learning_rate": 9.719529413586928e-06,
1940
+ "loss": 43.9258,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.47645667598365943,
1945
+ "grad_norm": 7.270499229431152,
1946
+ "learning_rate": 9.716363758713357e-06,
1947
+ "loss": 44.8198,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.4781767361857665,
1952
+ "grad_norm": 7.040411949157715,
1953
+ "learning_rate": 9.713180860087328e-06,
1954
+ "loss": 44.1966,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.4798967963878736,
1959
+ "grad_norm": 6.831189155578613,
1960
+ "learning_rate": 9.709980729346009e-06,
1961
+ "loss": 44.88,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.48161685658998066,
1966
+ "grad_norm": 7.017982482910156,
1967
+ "learning_rate": 9.706763378189571e-06,
1968
+ "loss": 44.3914,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.48333691679208773,
1973
+ "grad_norm": 7.631150245666504,
1974
+ "learning_rate": 9.703528818381144e-06,
1975
+ "loss": 44.3798,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.4850569769941948,
1980
+ "grad_norm": 6.717972278594971,
1981
+ "learning_rate": 9.70027706174678e-06,
1982
+ "loss": 43.8038,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.4867770371963019,
1987
+ "grad_norm": 8.252500534057617,
1988
+ "learning_rate": 9.697008120175402e-06,
1989
+ "loss": 44.4889,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.48849709739840896,
1994
+ "grad_norm": 7.6612420082092285,
1995
+ "learning_rate": 9.693722005618763e-06,
1996
+ "loss": 44.2001,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.49021715760051604,
2001
+ "grad_norm": 6.846263408660889,
2002
+ "learning_rate": 9.690418730091403e-06,
2003
+ "loss": 44.6985,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.4919372178026231,
2008
+ "grad_norm": 6.461937427520752,
2009
+ "learning_rate": 9.687098305670606e-06,
2010
+ "loss": 44.2506,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.49365727800473014,
2015
+ "grad_norm": 6.650141716003418,
2016
+ "learning_rate": 9.683760744496356e-06,
2017
+ "loss": 44.3858,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.4953773382068372,
2022
+ "grad_norm": 6.5828986167907715,
2023
+ "learning_rate": 9.68040605877129e-06,
2024
+ "loss": 43.6322,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.4970973984089443,
2029
+ "grad_norm": 6.385183334350586,
2030
+ "learning_rate": 9.677034260760658e-06,
2031
+ "loss": 44.7745,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.49881745861105137,
2036
+ "grad_norm": 7.130415916442871,
2037
+ "learning_rate": 9.673645362792273e-06,
2038
+ "loss": 44.1543,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.5005375188131584,
2043
+ "grad_norm": 6.580416202545166,
2044
+ "learning_rate": 9.670239377256467e-06,
2045
+ "loss": 43.8422,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.5022575790152656,
2050
+ "grad_norm": 7.959731101989746,
2051
+ "learning_rate": 9.666816316606044e-06,
2052
+ "loss": 44.4367,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.5039776392173726,
2057
+ "grad_norm": 6.089702606201172,
2058
+ "learning_rate": 9.663376193356249e-06,
2059
+ "loss": 43.9484,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.5056976994194797,
2064
+ "grad_norm": 8.458806037902832,
2065
+ "learning_rate": 9.659919020084695e-06,
2066
+ "loss": 44.1408,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.5074177596215868,
2071
+ "grad_norm": 6.733780860900879,
2072
+ "learning_rate": 9.656444809431344e-06,
2073
+ "loss": 43.9267,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.5091378198236939,
2078
+ "grad_norm": 8.281241416931152,
2079
+ "learning_rate": 9.652953574098444e-06,
2080
+ "loss": 44.7447,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.5108578800258009,
2085
+ "grad_norm": 7.2893195152282715,
2086
+ "learning_rate": 9.649445326850491e-06,
2087
+ "loss": 44.1749,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.5125779402279079,
2092
+ "grad_norm": 8.188138961791992,
2093
+ "learning_rate": 9.645920080514176e-06,
2094
+ "loss": 44.5725,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.5142980004300151,
2099
+ "grad_norm": 8.285508155822754,
2100
+ "learning_rate": 9.642377847978343e-06,
2101
+ "loss": 44.4519,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.5160180606321221,
2106
+ "grad_norm": 12.107803344726562,
2107
+ "learning_rate": 9.638818642193939e-06,
2108
+ "loss": 43.6642,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.5177381208342292,
2113
+ "grad_norm": 10.988150596618652,
2114
+ "learning_rate": 9.63524247617397e-06,
2115
+ "loss": 43.9385,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.5194581810363362,
2120
+ "grad_norm": 12.65985107421875,
2121
+ "learning_rate": 9.631649362993447e-06,
2122
+ "loss": 44.304,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.5211782412384434,
2127
+ "grad_norm": 12.63979721069336,
2128
+ "learning_rate": 9.62803931578935e-06,
2129
+ "loss": 44.2028,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.5228983014405504,
2134
+ "grad_norm": 7.90657377243042,
2135
+ "learning_rate": 9.624412347760564e-06,
2136
+ "loss": 44.1649,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.5246183616426575,
2141
+ "grad_norm": 9.31624698638916,
2142
+ "learning_rate": 9.620768472167844e-06,
2143
+ "loss": 43.996,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.5263384218447645,
2148
+ "grad_norm": 8.557055473327637,
2149
+ "learning_rate": 9.61710770233376e-06,
2150
+ "loss": 44.3358,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.5280584820468717,
2155
+ "grad_norm": 7.057743549346924,
2156
+ "learning_rate": 9.613430051642652e-06,
2157
+ "loss": 44.583,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.5297785422489787,
2162
+ "grad_norm": 7.244456768035889,
2163
+ "learning_rate": 9.609735533540576e-06,
2164
+ "loss": 43.7423,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.5314986024510858,
2169
+ "grad_norm": 6.6239333152771,
2170
+ "learning_rate": 9.606024161535261e-06,
2171
+ "loss": 43.719,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.5332186626531928,
2176
+ "grad_norm": 7.109512805938721,
2177
+ "learning_rate": 9.602295949196052e-06,
2178
+ "loss": 43.8263,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.5349387228553,
2183
+ "grad_norm": 7.938423156738281,
2184
+ "learning_rate": 9.59855091015387e-06,
2185
+ "loss": 43.513,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.536658783057407,
2190
+ "grad_norm": 7.159519195556641,
2191
+ "learning_rate": 9.594789058101154e-06,
2192
+ "loss": 43.7476,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.5383788432595141,
2197
+ "grad_norm": 9.051861763000488,
2198
+ "learning_rate": 9.591010406791814e-06,
2199
+ "loss": 44.6808,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.5400989034616211,
2204
+ "grad_norm": 7.437441825866699,
2205
+ "learning_rate": 9.587214970041181e-06,
2206
+ "loss": 44.2018,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.5418189636637283,
2211
+ "grad_norm": 8.533609390258789,
2212
+ "learning_rate": 9.58340276172596e-06,
2213
+ "loss": 44.35,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.5435390238658353,
2218
+ "grad_norm": 7.41975736618042,
2219
+ "learning_rate": 9.579573795784167e-06,
2220
+ "loss": 44.1627,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.5452590840679423,
2225
+ "grad_norm": 6.5013580322265625,
2226
+ "learning_rate": 9.575728086215093e-06,
2227
+ "loss": 44.0411,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.5469791442700495,
2232
+ "grad_norm": 8.311059951782227,
2233
+ "learning_rate": 9.571865647079246e-06,
2234
+ "loss": 44.6953,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.5486992044721565,
2239
+ "grad_norm": 5.960739612579346,
2240
+ "learning_rate": 9.567986492498299e-06,
2241
+ "loss": 44.1261,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.5504192646742636,
2246
+ "grad_norm": 7.7150959968566895,
2247
+ "learning_rate": 9.564090636655033e-06,
2248
+ "loss": 44.0052,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.5521393248763706,
2253
+ "grad_norm": 7.0516815185546875,
2254
+ "learning_rate": 9.560178093793304e-06,
2255
+ "loss": 44.4024,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.5538593850784778,
2260
+ "grad_norm": 6.510403633117676,
2261
+ "learning_rate": 9.55624887821797e-06,
2262
+ "loss": 44.3171,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.5555794452805848,
2267
+ "grad_norm": 6.586174488067627,
2268
+ "learning_rate": 9.552303004294845e-06,
2269
+ "loss": 44.1694,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.5572995054826919,
2274
+ "grad_norm": 7.093349456787109,
2275
+ "learning_rate": 9.548340486450656e-06,
2276
+ "loss": 43.9714,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.5590195656847989,
2281
+ "grad_norm": 5.638337135314941,
2282
+ "learning_rate": 9.544361339172976e-06,
2283
+ "loss": 43.9597,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.5607396258869061,
2288
+ "grad_norm": 6.339056491851807,
2289
+ "learning_rate": 9.54036557701018e-06,
2290
+ "loss": 43.9718,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.5624596860890131,
2295
+ "grad_norm": 6.259551525115967,
2296
+ "learning_rate": 9.536353214571393e-06,
2297
+ "loss": 44.1765,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.5641797462911202,
2302
+ "grad_norm": 6.071033477783203,
2303
+ "learning_rate": 9.53232426652643e-06,
2304
+ "loss": 44.1298,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.5658998064932272,
2309
+ "grad_norm": 5.966522216796875,
2310
+ "learning_rate": 9.528278747605741e-06,
2311
+ "loss": 43.5899,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.5676198666953344,
2316
+ "grad_norm": 6.373861312866211,
2317
+ "learning_rate": 9.52421667260037e-06,
2318
+ "loss": 43.9747,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.5693399268974414,
2323
+ "grad_norm": 7.79583215713501,
2324
+ "learning_rate": 9.52013805636189e-06,
2325
+ "loss": 44.1957,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.5710599870995485,
2330
+ "grad_norm": 6.730131149291992,
2331
+ "learning_rate": 9.516042913802349e-06,
2332
+ "loss": 44.5105,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.5727800473016555,
2337
+ "grad_norm": 6.649820804595947,
2338
+ "learning_rate": 9.511931259894219e-06,
2339
+ "loss": 43.4763,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.5745001075037627,
2344
+ "grad_norm": 8.12640380859375,
2345
+ "learning_rate": 9.507803109670337e-06,
2346
+ "loss": 43.5421,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.5762201677058697,
2351
+ "grad_norm": 7.1897783279418945,
2352
+ "learning_rate": 9.503658478223862e-06,
2353
+ "loss": 43.661,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.5779402279079768,
2358
+ "grad_norm": 6.837246417999268,
2359
+ "learning_rate": 9.499497380708202e-06,
2360
+ "loss": 43.7997,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.5796602881100839,
2365
+ "grad_norm": 8.631741523742676,
2366
+ "learning_rate": 9.495319832336969e-06,
2367
+ "loss": 43.8287,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.5813803483121909,
2372
+ "grad_norm": 8.00960636138916,
2373
+ "learning_rate": 9.491125848383926e-06,
2374
+ "loss": 43.6861,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.583100408514298,
2379
+ "grad_norm": 6.487185001373291,
2380
+ "learning_rate": 9.486915444182926e-06,
2381
+ "loss": 43.8275,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.584820468716405,
2386
+ "grad_norm": 7.411306381225586,
2387
+ "learning_rate": 9.482688635127849e-06,
2388
+ "loss": 43.4639,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.5865405289185122,
2393
+ "grad_norm": 6.86546516418457,
2394
+ "learning_rate": 9.478445436672566e-06,
2395
+ "loss": 44.094,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.5882605891206192,
2400
+ "grad_norm": 8.094916343688965,
2401
+ "learning_rate": 9.474185864330861e-06,
2402
+ "loss": 43.8569,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.5899806493227263,
2407
+ "grad_norm": 7.7384138107299805,
2408
+ "learning_rate": 9.469909933676388e-06,
2409
+ "loss": 43.8937,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.5917007095248333,
2414
+ "grad_norm": 8.301685333251953,
2415
+ "learning_rate": 9.46561766034261e-06,
2416
+ "loss": 44.288,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.5934207697269405,
2421
+ "grad_norm": 10.100611686706543,
2422
+ "learning_rate": 9.461309060022737e-06,
2423
+ "loss": 43.9889,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.5951408299290475,
2428
+ "grad_norm": 6.778660774230957,
2429
+ "learning_rate": 9.456984148469674e-06,
2430
+ "loss": 43.697,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.5968608901311546,
2435
+ "grad_norm": 11.071110725402832,
2436
+ "learning_rate": 9.452642941495967e-06,
2437
+ "loss": 44.3392,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.5985809503332616,
2442
+ "grad_norm": 7.321798324584961,
2443
+ "learning_rate": 9.448285454973739e-06,
2444
+ "loss": 43.5908,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.6003010105353688,
2449
+ "grad_norm": 10.584439277648926,
2450
+ "learning_rate": 9.443911704834624e-06,
2451
+ "loss": 44.094,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.6020210707374758,
2456
+ "grad_norm": 7.291213035583496,
2457
+ "learning_rate": 9.439521707069737e-06,
2458
+ "loss": 43.7771,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.6037411309395829,
2463
+ "grad_norm": 10.645991325378418,
2464
+ "learning_rate": 9.435115477729577e-06,
2465
+ "loss": 44.2799,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.60546119114169,
2470
+ "grad_norm": 8.463363647460938,
2471
+ "learning_rate": 9.430693032924003e-06,
2472
+ "loss": 43.9206,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.6071812513437971,
2477
+ "grad_norm": 11.510597229003906,
2478
+ "learning_rate": 9.426254388822152e-06,
2479
+ "loss": 43.8839,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.6089013115459041,
2484
+ "grad_norm": 9.736458778381348,
2485
+ "learning_rate": 9.421799561652391e-06,
2486
+ "loss": 44.6627,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.6106213717480112,
2491
+ "grad_norm": 11.647321701049805,
2492
+ "learning_rate": 9.417328567702256e-06,
2493
+ "loss": 43.6068,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.6123414319501183,
2498
+ "grad_norm": 12.150289535522461,
2499
+ "learning_rate": 9.412841423318386e-06,
2500
+ "loss": 43.6395,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.6140614921522253,
2505
+ "grad_norm": 9.2246675491333,
2506
+ "learning_rate": 9.408338144906475e-06,
2507
+ "loss": 44.1518,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.6157815523543324,
2512
+ "grad_norm": 10.310601234436035,
2513
+ "learning_rate": 9.403818748931201e-06,
2514
+ "loss": 43.9735,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.6175016125564394,
2519
+ "grad_norm": 8.350564002990723,
2520
+ "learning_rate": 9.399283251916174e-06,
2521
+ "loss": 43.7255,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.6192216727585466,
2526
+ "grad_norm": 9.116833686828613,
2527
+ "learning_rate": 9.394731670443869e-06,
2528
+ "loss": 43.6732,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.6209417329606536,
2533
+ "grad_norm": 8.664816856384277,
2534
+ "learning_rate": 9.390164021155568e-06,
2535
+ "loss": 43.6788,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.6226617931627607,
2540
+ "grad_norm": 8.421276092529297,
2541
+ "learning_rate": 9.385580320751301e-06,
2542
+ "loss": 43.7357,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.6243818533648677,
2547
+ "grad_norm": 7.4578680992126465,
2548
+ "learning_rate": 9.380980585989782e-06,
2549
+ "loss": 43.7452,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.6261019135669749,
2554
+ "grad_norm": 8.058576583862305,
2555
+ "learning_rate": 9.376364833688352e-06,
2556
+ "loss": 43.839,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.6278219737690819,
2561
+ "grad_norm": 7.826845169067383,
2562
+ "learning_rate": 9.371733080722911e-06,
2563
+ "loss": 43.8903,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.629542033971189,
2568
+ "grad_norm": 7.76792573928833,
2569
+ "learning_rate": 9.367085344027862e-06,
2570
+ "loss": 44.3217,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.631262094173296,
2575
+ "grad_norm": 8.252405166625977,
2576
+ "learning_rate": 9.362421640596044e-06,
2577
+ "loss": 44.0905,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.6329821543754032,
2582
+ "grad_norm": 7.431006908416748,
2583
+ "learning_rate": 9.35774198747868e-06,
2584
+ "loss": 43.864,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.6347022145775102,
2589
+ "grad_norm": 9.33600902557373,
2590
+ "learning_rate": 9.353046401785297e-06,
2591
+ "loss": 43.0342,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.6364222747796173,
2596
+ "grad_norm": 7.454495906829834,
2597
+ "learning_rate": 9.348334900683685e-06,
2598
+ "loss": 43.7442,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.6381423349817243,
2603
+ "grad_norm": 8.429414749145508,
2604
+ "learning_rate": 9.343607501399812e-06,
2605
+ "loss": 43.7836,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.6398623951838315,
2610
+ "grad_norm": 7.481090545654297,
2611
+ "learning_rate": 9.338864221217783e-06,
2612
+ "loss": 43.9994,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.6415824553859385,
2617
+ "grad_norm": 7.106781482696533,
2618
+ "learning_rate": 9.33410507747976e-06,
2619
+ "loss": 43.6922,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.6433025155880456,
2624
+ "grad_norm": 7.0425615310668945,
2625
+ "learning_rate": 9.329330087585905e-06,
2626
+ "loss": 44.5278,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.6450225757901527,
2631
+ "grad_norm": 7.197376728057861,
2632
+ "learning_rate": 9.324539268994317e-06,
2633
+ "loss": 43.8955,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.6467426359922598,
2638
+ "grad_norm": 6.9038286209106445,
2639
+ "learning_rate": 9.319732639220965e-06,
2640
+ "loss": 43.9268,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 0.6484626961943668,
2645
+ "grad_norm": 7.032724380493164,
2646
+ "learning_rate": 9.31491021583963e-06,
2647
+ "loss": 43.5221,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 0.6501827563964738,
2652
+ "grad_norm": 7.234856605529785,
2653
+ "learning_rate": 9.310072016481832e-06,
2654
+ "loss": 43.4951,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 0.651902816598581,
2659
+ "grad_norm": 6.546868801116943,
2660
+ "learning_rate": 9.305218058836778e-06,
2661
+ "loss": 44.0876,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 0.653622876800688,
2666
+ "grad_norm": 6.904932498931885,
2667
+ "learning_rate": 9.300348360651282e-06,
2668
+ "loss": 44.5423,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 0.6553429370027951,
2673
+ "grad_norm": 7.505612850189209,
2674
+ "learning_rate": 9.295462939729711e-06,
2675
+ "loss": 43.9986,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 0.6570629972049021,
2680
+ "grad_norm": 5.859259605407715,
2681
+ "learning_rate": 9.290561813933916e-06,
2682
+ "loss": 43.8683,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 0.6587830574070093,
2687
+ "grad_norm": 8.047765731811523,
2688
+ "learning_rate": 9.285645001183167e-06,
2689
+ "loss": 44.4658,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 0.6605031176091163,
2694
+ "grad_norm": 6.570570945739746,
2695
+ "learning_rate": 9.280712519454092e-06,
2696
+ "loss": 43.6115,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 0.6622231778112234,
2701
+ "grad_norm": 6.266587734222412,
2702
+ "learning_rate": 9.2757643867806e-06,
2703
+ "loss": 43.6822,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 0.6639432380133304,
2708
+ "grad_norm": 7.281513214111328,
2709
+ "learning_rate": 9.270800621253833e-06,
2710
+ "loss": 43.8285,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 0.6656632982154376,
2715
+ "grad_norm": 6.563234806060791,
2716
+ "learning_rate": 9.265821241022074e-06,
2717
+ "loss": 43.6976,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 0.6673833584175446,
2722
+ "grad_norm": 6.870432376861572,
2723
+ "learning_rate": 9.26082626429071e-06,
2724
+ "loss": 43.9566,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 0.6691034186196517,
2729
+ "grad_norm": 8.11976432800293,
2730
+ "learning_rate": 9.255815709322142e-06,
2731
+ "loss": 43.8613,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 0.6708234788217587,
2736
+ "grad_norm": 7.040714740753174,
2737
+ "learning_rate": 9.250789594435735e-06,
2738
+ "loss": 43.3387,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 0.6725435390238659,
2743
+ "grad_norm": 6.891185283660889,
2744
+ "learning_rate": 9.245747938007734e-06,
2745
+ "loss": 43.596,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 0.6742635992259729,
2750
+ "grad_norm": 7.045391082763672,
2751
+ "learning_rate": 9.240690758471216e-06,
2752
+ "loss": 43.1001,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 0.67598365942808,
2757
+ "grad_norm": 6.838486194610596,
2758
+ "learning_rate": 9.235618074316005e-06,
2759
+ "loss": 44.0918,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 0.677703719630187,
2764
+ "grad_norm": 8.006799697875977,
2765
+ "learning_rate": 9.230529904088621e-06,
2766
+ "loss": 43.4563,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 0.6794237798322942,
2771
+ "grad_norm": 7.786087989807129,
2772
+ "learning_rate": 9.225426266392191e-06,
2773
+ "loss": 44.1002,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 0.6811438400344012,
2778
+ "grad_norm": 7.782168388366699,
2779
+ "learning_rate": 9.220307179886408e-06,
2780
+ "loss": 44.15,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 0.6828639002365082,
2785
+ "grad_norm": 7.179986953735352,
2786
+ "learning_rate": 9.215172663287435e-06,
2787
+ "loss": 43.8326,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 0.6845839604386154,
2792
+ "grad_norm": 8.045145988464355,
2793
+ "learning_rate": 9.210022735367857e-06,
2794
+ "loss": 43.3196,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 0.6863040206407224,
2799
+ "grad_norm": 7.906603813171387,
2800
+ "learning_rate": 9.204857414956606e-06,
2801
+ "loss": 44.152,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 0.6880240808428295,
2806
+ "grad_norm": 8.266923904418945,
2807
+ "learning_rate": 9.199676720938886e-06,
2808
+ "loss": 44.158,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 0.6897441410449365,
2813
+ "grad_norm": 7.465760231018066,
2814
+ "learning_rate": 9.194480672256117e-06,
2815
+ "loss": 43.9078,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 0.6914642012470437,
2820
+ "grad_norm": 7.522243499755859,
2821
+ "learning_rate": 9.189269287905849e-06,
2822
+ "loss": 43.3097,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 0.6931842614491507,
2827
+ "grad_norm": 6.484007358551025,
2828
+ "learning_rate": 9.184042586941708e-06,
2829
+ "loss": 43.9014,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 0.6949043216512578,
2834
+ "grad_norm": 6.548778533935547,
2835
+ "learning_rate": 9.178800588473317e-06,
2836
+ "loss": 43.9104,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 0.6966243818533648,
2841
+ "grad_norm": 6.578863620758057,
2842
+ "learning_rate": 9.17354331166623e-06,
2843
+ "loss": 44.0022,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 0.698344442055472,
2848
+ "grad_norm": 7.083658695220947,
2849
+ "learning_rate": 9.168270775741863e-06,
2850
+ "loss": 43.7902,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 0.700064502257579,
2855
+ "grad_norm": 7.241711139678955,
2856
+ "learning_rate": 9.162982999977417e-06,
2857
+ "loss": 43.9464,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 0.7017845624596861,
2862
+ "grad_norm": 6.329436779022217,
2863
+ "learning_rate": 9.157680003705816e-06,
2864
+ "loss": 44.1072,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 0.7035046226617931,
2869
+ "grad_norm": 6.435650825500488,
2870
+ "learning_rate": 9.15236180631563e-06,
2871
+ "loss": 43.392,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 0.7052246828639003,
2876
+ "grad_norm": 5.681223392486572,
2877
+ "learning_rate": 9.14702842725101e-06,
2878
+ "loss": 44.3148,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 0.7069447430660073,
2883
+ "grad_norm": 6.71289587020874,
2884
+ "learning_rate": 9.14167988601161e-06,
2885
+ "loss": 43.8893,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 0.7086648032681144,
2890
+ "grad_norm": 6.497440814971924,
2891
+ "learning_rate": 9.13631620215252e-06,
2892
+ "loss": 44.1776,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 0.7103848634702215,
2897
+ "grad_norm": 7.291422367095947,
2898
+ "learning_rate": 9.130937395284199e-06,
2899
+ "loss": 43.8195,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 0.7121049236723286,
2904
+ "grad_norm": 6.935153961181641,
2905
+ "learning_rate": 9.125543485072386e-06,
2906
+ "loss": 43.9977,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 0.7138249838744356,
2911
+ "grad_norm": 6.302245140075684,
2912
+ "learning_rate": 9.120134491238054e-06,
2913
+ "loss": 43.677,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 0.7155450440765426,
2918
+ "grad_norm": 6.205868244171143,
2919
+ "learning_rate": 9.114710433557314e-06,
2920
+ "loss": 43.8423,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 0.7172651042786498,
2925
+ "grad_norm": 5.34831428527832,
2926
+ "learning_rate": 9.109271331861361e-06,
2927
+ "loss": 43.6707,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 0.7189851644807568,
2932
+ "grad_norm": 7.174152374267578,
2933
+ "learning_rate": 9.103817206036383e-06,
2934
+ "loss": 43.3579,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 0.7207052246828639,
2939
+ "grad_norm": 6.666977882385254,
2940
+ "learning_rate": 9.098348076023506e-06,
2941
+ "loss": 43.8424,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 0.7224252848849709,
2946
+ "grad_norm": 7.491025924682617,
2947
+ "learning_rate": 9.092863961818715e-06,
2948
+ "loss": 44.4333,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 0.7241453450870781,
2953
+ "grad_norm": 6.508261680603027,
2954
+ "learning_rate": 9.087364883472774e-06,
2955
+ "loss": 43.7001,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 0.7258654052891851,
2960
+ "grad_norm": 7.418080806732178,
2961
+ "learning_rate": 9.08185086109116e-06,
2962
+ "loss": 44.0001,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 0.7275854654912922,
2967
+ "grad_norm": 6.983603000640869,
2968
+ "learning_rate": 9.076321914833988e-06,
2969
+ "loss": 44.6241,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 0.7293055256933992,
2974
+ "grad_norm": 8.667305946350098,
2975
+ "learning_rate": 9.070778064915937e-06,
2976
+ "loss": 44.1089,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 0.7310255858955064,
2981
+ "grad_norm": 7.419984340667725,
2982
+ "learning_rate": 9.065219331606182e-06,
2983
+ "loss": 43.9046,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 0.7327456460976134,
2988
+ "grad_norm": 7.34318733215332,
2989
+ "learning_rate": 9.0596457352283e-06,
2990
+ "loss": 43.794,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 0.7344657062997205,
2995
+ "grad_norm": 7.931493759155273,
2996
+ "learning_rate": 9.054057296160221e-06,
2997
+ "loss": 44.6317,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 0.7361857665018275,
3002
+ "grad_norm": 6.583981037139893,
3003
+ "learning_rate": 9.048454034834143e-06,
3004
+ "loss": 43.5199,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 0.7379058267039347,
3009
+ "grad_norm": 8.499653816223145,
3010
+ "learning_rate": 9.042835971736446e-06,
3011
+ "loss": 43.8616,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 0.7396258869060417,
3016
+ "grad_norm": 6.757936000823975,
3017
+ "learning_rate": 9.037203127407642e-06,
3018
+ "loss": 44.0385,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 0.7413459471081488,
3023
+ "grad_norm": 8.30978012084961,
3024
+ "learning_rate": 9.031555522442268e-06,
3025
+ "loss": 43.4628,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 0.7430660073102558,
3030
+ "grad_norm": 7.357321262359619,
3031
+ "learning_rate": 9.025893177488848e-06,
3032
+ "loss": 43.6677,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 0.744786067512363,
3037
+ "grad_norm": 8.4613676071167,
3038
+ "learning_rate": 9.02021611324978e-06,
3039
+ "loss": 43.2542,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 0.74650612771447,
3044
+ "grad_norm": 8.782477378845215,
3045
+ "learning_rate": 9.014524350481287e-06,
3046
+ "loss": 44.0515,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 0.7482261879165771,
3051
+ "grad_norm": 6.701351165771484,
3052
+ "learning_rate": 9.008817909993332e-06,
3053
+ "loss": 44.0643,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 0.7499462481186842,
3058
+ "grad_norm": 7.1624884605407715,
3059
+ "learning_rate": 9.00309681264954e-06,
3060
+ "loss": 44.0639,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 0.7516663083207912,
3065
+ "grad_norm": 6.229190349578857,
3066
+ "learning_rate": 8.997361079367124e-06,
3067
+ "loss": 43.9093,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 0.7533863685228983,
3072
+ "grad_norm": 7.180543422698975,
3073
+ "learning_rate": 8.991610731116808e-06,
3074
+ "loss": 44.2652,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 0.7551064287250053,
3079
+ "grad_norm": 6.3346781730651855,
3080
+ "learning_rate": 8.985845788922753e-06,
3081
+ "loss": 43.2561,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 0.7568264889271125,
3086
+ "grad_norm": 7.270414352416992,
3087
+ "learning_rate": 8.980066273862473e-06,
3088
+ "loss": 43.9074,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 0.7585465491292195,
3093
+ "grad_norm": 6.431163311004639,
3094
+ "learning_rate": 8.974272207066767e-06,
3095
+ "loss": 43.9343,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 0.7602666093313266,
3100
+ "grad_norm": 6.415679931640625,
3101
+ "learning_rate": 8.968463609719636e-06,
3102
+ "loss": 44.2067,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 0.7619866695334336,
3107
+ "grad_norm": 6.083033561706543,
3108
+ "learning_rate": 8.962640503058206e-06,
3109
+ "loss": 43.7967,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 0.7637067297355408,
3114
+ "grad_norm": 6.942599773406982,
3115
+ "learning_rate": 8.956802908372652e-06,
3116
+ "loss": 43.4928,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 0.7654267899376478,
3121
+ "grad_norm": 6.515557765960693,
3122
+ "learning_rate": 8.95095084700612e-06,
3123
+ "loss": 43.6577,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 0.7671468501397549,
3128
+ "grad_norm": 7.167238235473633,
3129
+ "learning_rate": 8.945084340354646e-06,
3130
+ "loss": 43.4542,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 0.7688669103418619,
3135
+ "grad_norm": 7.30296516418457,
3136
+ "learning_rate": 8.939203409867084e-06,
3137
+ "loss": 43.123,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 0.7705869705439691,
3142
+ "grad_norm": 7.387278079986572,
3143
+ "learning_rate": 8.933308077045022e-06,
3144
+ "loss": 43.6603,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 0.7723070307460761,
3149
+ "grad_norm": 7.026780128479004,
3150
+ "learning_rate": 8.927398363442705e-06,
3151
+ "loss": 44.0497,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 0.7740270909481832,
3156
+ "grad_norm": 7.03558874130249,
3157
+ "learning_rate": 8.921474290666955e-06,
3158
+ "loss": 43.1461,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 0.7757471511502902,
3163
+ "grad_norm": 8.48353099822998,
3164
+ "learning_rate": 8.915535880377096e-06,
3165
+ "loss": 43.6771,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 0.7774672113523974,
3170
+ "grad_norm": 7.250082015991211,
3171
+ "learning_rate": 8.909583154284868e-06,
3172
+ "loss": 43.9369,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 0.7791872715545044,
3177
+ "grad_norm": 8.958197593688965,
3178
+ "learning_rate": 8.90361613415436e-06,
3179
+ "loss": 43.7911,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 0.7809073317566115,
3184
+ "grad_norm": 8.168319702148438,
3185
+ "learning_rate": 8.897634841801911e-06,
3186
+ "loss": 43.3905,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 0.7826273919587186,
3191
+ "grad_norm": 8.520408630371094,
3192
+ "learning_rate": 8.891639299096051e-06,
3193
+ "loss": 43.3708,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 0.7843474521608256,
3198
+ "grad_norm": 8.194758415222168,
3199
+ "learning_rate": 8.885629527957407e-06,
3200
+ "loss": 43.3692,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 0.7860675123629327,
3205
+ "grad_norm": 7.554206848144531,
3206
+ "learning_rate": 8.879605550358627e-06,
3207
+ "loss": 43.5693,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 0.7877875725650397,
3212
+ "grad_norm": 7.146202087402344,
3213
+ "learning_rate": 8.873567388324302e-06,
3214
+ "loss": 43.8261,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 0.7895076327671469,
3219
+ "grad_norm": 6.808493137359619,
3220
+ "learning_rate": 8.867515063930881e-06,
3221
+ "loss": 43.3648,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 0.7912276929692539,
3226
+ "grad_norm": 7.165658950805664,
3227
+ "learning_rate": 8.861448599306597e-06,
3228
+ "loss": 43.0367,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 0.792947753171361,
3233
+ "grad_norm": 6.527984142303467,
3234
+ "learning_rate": 8.855368016631377e-06,
3235
+ "loss": 43.4491,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 0.794667813373468,
3240
+ "grad_norm": 6.912752628326416,
3241
+ "learning_rate": 8.849273338136772e-06,
3242
+ "loss": 43.6405,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 0.7963878735755752,
3247
+ "grad_norm": 6.334918975830078,
3248
+ "learning_rate": 8.84316458610586e-06,
3249
+ "loss": 44.4637,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 0.7981079337776822,
3254
+ "grad_norm": 7.22133207321167,
3255
+ "learning_rate": 8.837041782873182e-06,
3256
+ "loss": 43.2829,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 0.7998279939797893,
3261
+ "grad_norm": 6.233572006225586,
3262
+ "learning_rate": 8.83090495082465e-06,
3263
+ "loss": 43.3993,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 0.8015480541818963,
3268
+ "grad_norm": 6.681156635284424,
3269
+ "learning_rate": 8.824754112397467e-06,
3270
+ "loss": 43.2356,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 0.8032681143840035,
3275
+ "grad_norm": 7.240959167480469,
3276
+ "learning_rate": 8.818589290080043e-06,
3277
+ "loss": 42.8966,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 0.8049881745861105,
3282
+ "grad_norm": 6.253081798553467,
3283
+ "learning_rate": 8.812410506411925e-06,
3284
+ "loss": 43.9822,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 0.8067082347882176,
3289
+ "grad_norm": 7.541505813598633,
3290
+ "learning_rate": 8.806217783983693e-06,
3291
+ "loss": 43.9604,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 0.8084282949903246,
3296
+ "grad_norm": 7.4928483963012695,
3297
+ "learning_rate": 8.800011145436893e-06,
3298
+ "loss": 43.8446,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 0.8101483551924318,
3303
+ "grad_norm": 6.140499591827393,
3304
+ "learning_rate": 8.793790613463956e-06,
3305
+ "loss": 43.6913,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 0.8118684153945388,
3310
+ "grad_norm": 7.944373607635498,
3311
+ "learning_rate": 8.787556210808101e-06,
3312
+ "loss": 43.4474,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 0.8135884755966459,
3317
+ "grad_norm": 6.9422101974487305,
3318
+ "learning_rate": 8.781307960263267e-06,
3319
+ "loss": 43.293,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 0.815308535798753,
3324
+ "grad_norm": 6.664095878601074,
3325
+ "learning_rate": 8.77504588467402e-06,
3326
+ "loss": 43.8227,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 0.81702859600086,
3331
+ "grad_norm": 7.298461437225342,
3332
+ "learning_rate": 8.768770006935475e-06,
3333
+ "loss": 43.7175,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 0.8187486562029671,
3338
+ "grad_norm": 6.43251895904541,
3339
+ "learning_rate": 8.762480349993204e-06,
3340
+ "loss": 43.143,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 0.8204687164050741,
3345
+ "grad_norm": 6.303859233856201,
3346
+ "learning_rate": 8.756176936843161e-06,
3347
+ "loss": 43.7655,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 0.8221887766071813,
3352
+ "grad_norm": 6.824503421783447,
3353
+ "learning_rate": 8.749859790531601e-06,
3354
+ "loss": 43.5909,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 0.8239088368092883,
3359
+ "grad_norm": 6.232965469360352,
3360
+ "learning_rate": 8.743528934154982e-06,
3361
+ "loss": 43.6798,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 0.8256288970113954,
3366
+ "grad_norm": 6.288873672485352,
3367
+ "learning_rate": 8.737184390859887e-06,
3368
+ "loss": 43.4713,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 0.8273489572135024,
3373
+ "grad_norm": 6.1072306632995605,
3374
+ "learning_rate": 8.730826183842947e-06,
3375
+ "loss": 43.4521,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 0.8290690174156096,
3380
+ "grad_norm": 7.3213701248168945,
3381
+ "learning_rate": 8.724454336350742e-06,
3382
+ "loss": 43.9662,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 0.8307890776177166,
3387
+ "grad_norm": 6.282354354858398,
3388
+ "learning_rate": 8.718068871679735e-06,
3389
+ "loss": 44.1781,
3390
+ "step": 483
3391
+ },
3392
+ {
3393
+ "epoch": 0.8325091378198237,
3394
+ "grad_norm": 7.692941188812256,
3395
+ "learning_rate": 8.711669813176165e-06,
3396
+ "loss": 43.5585,
3397
+ "step": 484
3398
+ },
3399
+ {
3400
+ "epoch": 0.8342291980219307,
3401
+ "grad_norm": 6.070176124572754,
3402
+ "learning_rate": 8.705257184235973e-06,
3403
+ "loss": 43.843,
3404
+ "step": 485
3405
+ },
3406
+ {
3407
+ "epoch": 0.8359492582240379,
3408
+ "grad_norm": 7.584023952484131,
3409
+ "learning_rate": 8.698831008304723e-06,
3410
+ "loss": 43.5888,
3411
+ "step": 486
3412
+ },
3413
+ {
3414
+ "epoch": 0.8376693184261449,
3415
+ "grad_norm": 8.037973403930664,
3416
+ "learning_rate": 8.6923913088775e-06,
3417
+ "loss": 43.4765,
3418
+ "step": 487
3419
+ },
3420
+ {
3421
+ "epoch": 0.839389378628252,
3422
+ "grad_norm": 6.745630741119385,
3423
+ "learning_rate": 8.685938109498839e-06,
3424
+ "loss": 44.0438,
3425
+ "step": 488
3426
+ },
3427
+ {
3428
+ "epoch": 0.841109438830359,
3429
+ "grad_norm": 6.660660743713379,
3430
+ "learning_rate": 8.679471433762633e-06,
3431
+ "loss": 43.5884,
3432
+ "step": 489
3433
+ },
3434
+ {
3435
+ "epoch": 0.8428294990324662,
3436
+ "grad_norm": 7.205166339874268,
3437
+ "learning_rate": 8.672991305312042e-06,
3438
+ "loss": 43.5902,
3439
+ "step": 490
3440
+ },
3441
+ {
3442
+ "epoch": 0.8445495592345732,
3443
+ "grad_norm": 6.969662666320801,
3444
+ "learning_rate": 8.666497747839413e-06,
3445
+ "loss": 43.339,
3446
+ "step": 491
3447
+ },
3448
+ {
3449
+ "epoch": 0.8462696194366803,
3450
+ "grad_norm": 6.3066229820251465,
3451
+ "learning_rate": 8.659990785086195e-06,
3452
+ "loss": 43.8102,
3453
+ "step": 492
3454
+ },
3455
+ {
3456
+ "epoch": 0.8479896796387874,
3457
+ "grad_norm": 7.804117202758789,
3458
+ "learning_rate": 8.653470440842847e-06,
3459
+ "loss": 43.7162,
3460
+ "step": 493
3461
+ },
3462
+ {
3463
+ "epoch": 0.8497097398408945,
3464
+ "grad_norm": 6.339798450469971,
3465
+ "learning_rate": 8.646936738948747e-06,
3466
+ "loss": 43.3229,
3467
+ "step": 494
3468
+ },
3469
+ {
3470
+ "epoch": 0.8514298000430015,
3471
+ "grad_norm": 8.31767749786377,
3472
+ "learning_rate": 8.64038970329212e-06,
3473
+ "loss": 43.8772,
3474
+ "step": 495
3475
+ },
3476
+ {
3477
+ "epoch": 0.8531498602451085,
3478
+ "grad_norm": 7.365615367889404,
3479
+ "learning_rate": 8.633829357809937e-06,
3480
+ "loss": 43.2881,
3481
+ "step": 496
3482
+ },
3483
+ {
3484
+ "epoch": 0.8548699204472157,
3485
+ "grad_norm": 8.474952697753906,
3486
+ "learning_rate": 8.627255726487831e-06,
3487
+ "loss": 43.7939,
3488
+ "step": 497
3489
+ },
3490
+ {
3491
+ "epoch": 0.8565899806493227,
3492
+ "grad_norm": 6.960323333740234,
3493
+ "learning_rate": 8.620668833360009e-06,
3494
+ "loss": 43.499,
3495
+ "step": 498
3496
+ },
3497
+ {
3498
+ "epoch": 0.8583100408514298,
3499
+ "grad_norm": 7.6085734367370605,
3500
+ "learning_rate": 8.614068702509169e-06,
3501
+ "loss": 43.2025,
3502
+ "step": 499
3503
+ },
3504
+ {
3505
+ "epoch": 0.8600301010535368,
3506
+ "grad_norm": 5.805634498596191,
3507
+ "learning_rate": 8.607455358066404e-06,
3508
+ "loss": 44.0489,
3509
+ "step": 500
3510
+ },
3511
+ {
3512
+ "epoch": 0.861750161255644,
3513
+ "grad_norm": 7.452625274658203,
3514
+ "learning_rate": 8.600828824211122e-06,
3515
+ "loss": 43.147,
3516
+ "step": 501
3517
+ },
3518
+ {
3519
+ "epoch": 0.863470221457751,
3520
+ "grad_norm": 6.4528584480285645,
3521
+ "learning_rate": 8.594189125170952e-06,
3522
+ "loss": 43.5228,
3523
+ "step": 502
3524
+ },
3525
+ {
3526
+ "epoch": 0.8651902816598581,
3527
+ "grad_norm": 7.375026702880859,
3528
+ "learning_rate": 8.587536285221656e-06,
3529
+ "loss": 44.272,
3530
+ "step": 503
3531
+ },
3532
+ {
3533
+ "epoch": 0.8669103418619651,
3534
+ "grad_norm": 6.547872543334961,
3535
+ "learning_rate": 8.580870328687041e-06,
3536
+ "loss": 43.4759,
3537
+ "step": 504
3538
+ },
3539
+ {
3540
+ "epoch": 0.8686304020640723,
3541
+ "grad_norm": 7.088862419128418,
3542
+ "learning_rate": 8.574191279938872e-06,
3543
+ "loss": 43.5528,
3544
+ "step": 505
3545
+ },
3546
+ {
3547
+ "epoch": 0.8703504622661793,
3548
+ "grad_norm": 6.6691083908081055,
3549
+ "learning_rate": 8.567499163396777e-06,
3550
+ "loss": 43.4488,
3551
+ "step": 506
3552
+ },
3553
+ {
3554
+ "epoch": 0.8720705224682864,
3555
+ "grad_norm": 7.416652202606201,
3556
+ "learning_rate": 8.560794003528171e-06,
3557
+ "loss": 43.5291,
3558
+ "step": 507
3559
+ },
3560
+ {
3561
+ "epoch": 0.8737905826703934,
3562
+ "grad_norm": 5.969050884246826,
3563
+ "learning_rate": 8.554075824848146e-06,
3564
+ "loss": 43.5905,
3565
+ "step": 508
3566
+ },
3567
+ {
3568
+ "epoch": 0.8755106428725006,
3569
+ "grad_norm": 7.501400470733643,
3570
+ "learning_rate": 8.5473446519194e-06,
3571
+ "loss": 44.0266,
3572
+ "step": 509
3573
+ },
3574
+ {
3575
+ "epoch": 0.8772307030746076,
3576
+ "grad_norm": 6.1612548828125,
3577
+ "learning_rate": 8.540600509352139e-06,
3578
+ "loss": 44.2164,
3579
+ "step": 510
3580
+ },
3581
+ {
3582
+ "epoch": 0.8789507632767147,
3583
+ "grad_norm": 7.144975662231445,
3584
+ "learning_rate": 8.533843421803985e-06,
3585
+ "loss": 43.1628,
3586
+ "step": 511
3587
+ },
3588
+ {
3589
+ "epoch": 0.8806708234788218,
3590
+ "grad_norm": 6.905309200286865,
3591
+ "learning_rate": 8.527073413979894e-06,
3592
+ "loss": 43.8717,
3593
+ "step": 512
3594
+ },
3595
+ {
3596
+ "epoch": 0.8823908836809289,
3597
+ "grad_norm": 7.095192909240723,
3598
+ "learning_rate": 8.520290510632055e-06,
3599
+ "loss": 43.612,
3600
+ "step": 513
3601
+ },
3602
+ {
3603
+ "epoch": 0.8841109438830359,
3604
+ "grad_norm": 6.804945468902588,
3605
+ "learning_rate": 8.51349473655981e-06,
3606
+ "loss": 43.4807,
3607
+ "step": 514
3608
+ },
3609
+ {
3610
+ "epoch": 0.8858310040851429,
3611
+ "grad_norm": 8.927321434020996,
3612
+ "learning_rate": 8.506686116609553e-06,
3613
+ "loss": 43.5119,
3614
+ "step": 515
3615
+ },
3616
+ {
3617
+ "epoch": 0.8875510642872501,
3618
+ "grad_norm": 6.946136474609375,
3619
+ "learning_rate": 8.499864675674648e-06,
3620
+ "loss": 43.1227,
3621
+ "step": 516
3622
+ },
3623
+ {
3624
+ "epoch": 0.8892711244893571,
3625
+ "grad_norm": 11.003009796142578,
3626
+ "learning_rate": 8.493030438695336e-06,
3627
+ "loss": 43.2844,
3628
+ "step": 517
3629
+ },
3630
+ {
3631
+ "epoch": 0.8909911846914642,
3632
+ "grad_norm": 9.151321411132812,
3633
+ "learning_rate": 8.486183430658639e-06,
3634
+ "loss": 43.9351,
3635
+ "step": 518
3636
+ },
3637
+ {
3638
+ "epoch": 0.8927112448935712,
3639
+ "grad_norm": 10.419197082519531,
3640
+ "learning_rate": 8.479323676598271e-06,
3641
+ "loss": 43.4703,
3642
+ "step": 519
3643
+ },
3644
+ {
3645
+ "epoch": 0.8944313050956784,
3646
+ "grad_norm": 9.973617553710938,
3647
+ "learning_rate": 8.472451201594556e-06,
3648
+ "loss": 43.2196,
3649
+ "step": 520
3650
+ },
3651
+ {
3652
+ "epoch": 0.8961513652977854,
3653
+ "grad_norm": 7.706507682800293,
3654
+ "learning_rate": 8.465566030774314e-06,
3655
+ "loss": 43.3206,
3656
+ "step": 521
3657
+ },
3658
+ {
3659
+ "epoch": 0.8978714254998925,
3660
+ "grad_norm": 7.455542087554932,
3661
+ "learning_rate": 8.458668189310793e-06,
3662
+ "loss": 43.2529,
3663
+ "step": 522
3664
+ },
3665
+ {
3666
+ "epoch": 0.8995914857019995,
3667
+ "grad_norm": 7.595444202423096,
3668
+ "learning_rate": 8.451757702423566e-06,
3669
+ "loss": 43.5217,
3670
+ "step": 523
3671
+ },
3672
+ {
3673
+ "epoch": 0.9013115459041067,
3674
+ "grad_norm": 7.0413899421691895,
3675
+ "learning_rate": 8.444834595378434e-06,
3676
+ "loss": 43.6686,
3677
+ "step": 524
3678
+ },
3679
+ {
3680
+ "epoch": 0.9030316061062137,
3681
+ "grad_norm": 7.505328178405762,
3682
+ "learning_rate": 8.437898893487345e-06,
3683
+ "loss": 43.508,
3684
+ "step": 525
3685
+ },
3686
+ {
3687
+ "epoch": 0.9047516663083208,
3688
+ "grad_norm": 6.636236667633057,
3689
+ "learning_rate": 8.430950622108292e-06,
3690
+ "loss": 43.6455,
3691
+ "step": 526
3692
+ },
3693
+ {
3694
+ "epoch": 0.9064717265104278,
3695
+ "grad_norm": 8.014334678649902,
3696
+ "learning_rate": 8.42398980664523e-06,
3697
+ "loss": 43.9419,
3698
+ "step": 527
3699
+ },
3700
+ {
3701
+ "epoch": 0.908191786712535,
3702
+ "grad_norm": 6.861055374145508,
3703
+ "learning_rate": 8.417016472547968e-06,
3704
+ "loss": 44.0091,
3705
+ "step": 528
3706
+ },
3707
+ {
3708
+ "epoch": 0.909911846914642,
3709
+ "grad_norm": 7.528046607971191,
3710
+ "learning_rate": 8.41003064531209e-06,
3711
+ "loss": 43.9412,
3712
+ "step": 529
3713
+ },
3714
+ {
3715
+ "epoch": 0.9116319071167491,
3716
+ "grad_norm": 6.380741596221924,
3717
+ "learning_rate": 8.403032350478857e-06,
3718
+ "loss": 43.1688,
3719
+ "step": 530
3720
+ },
3721
+ {
3722
+ "epoch": 0.9133519673188562,
3723
+ "grad_norm": 8.248329162597656,
3724
+ "learning_rate": 8.396021613635116e-06,
3725
+ "loss": 43.241,
3726
+ "step": 531
3727
+ }
3728
+ ],
3729
+ "logging_steps": 1,
3730
+ "max_steps": 1743,
3731
+ "num_input_tokens_seen": 0,
3732
+ "num_train_epochs": 3,
3733
+ "save_steps": 59,
3734
+ "stateful_callbacks": {
3735
+ "TrainerControl": {
3736
+ "args": {
3737
+ "should_epoch_stop": false,
3738
+ "should_evaluate": false,
3739
+ "should_log": false,
3740
+ "should_save": true,
3741
+ "should_training_stop": false
3742
+ },
3743
+ "attributes": {}
3744
+ }
3745
+ },
3746
+ "total_flos": 9.448505275235225e+19,
3747
+ "train_batch_size": 1,
3748
+ "trial_name": null,
3749
+ "trial_params": null
3750
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff