|
import os |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
from transformers import PretrainedConfig |
|
|
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class Qwen2VLVisionConfig(PretrainedConfig): |
|
model_type = "qwen2_vit" |
|
|
|
def __init__( |
|
self, |
|
depth=32, |
|
embed_dim=1280, |
|
hidden_size=3584, |
|
hidden_act="quick_gelu", |
|
mlp_ratio=4, |
|
num_heads=16, |
|
in_channels=3, |
|
patch_size=14, |
|
spatial_merge_size=2, |
|
temporal_patch_size=2, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.depth = depth |
|
self.embed_dim = embed_dim |
|
self.hidden_size = hidden_size |
|
self.hidden_act = hidden_act |
|
self.mlp_ratio = mlp_ratio |
|
self.num_heads = num_heads |
|
self.in_channels = in_channels |
|
self.patch_size = patch_size |
|
self.spatial_merge_size = spatial_merge_size |
|
self.temporal_patch_size = temporal_patch_size |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": |
|
cls._set_token_in_kwargs(kwargs) |
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
if config_dict.get("model_type") == "qwen2_vl": |
|
config_dict = config_dict["vision_config"] |
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: |
|
logger.warning( |
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." |
|
) |
|
|
|
return cls.from_dict(config_dict, **kwargs) |
|
|
|
|