|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Qwen2-VL model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.nn import CrossEntropyLoss, LayerNorm |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_varlen_func |
|
|
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward |
|
else: |
|
flash_attn_varlen_func = None |
|
|
|
from .configuration_qwen2_vit import Qwen2VLVisionConfig |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/). |
|
|
|
Explanation: |
|
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding |
|
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For |
|
vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately. |
|
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding. |
|
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal, |
|
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no |
|
difference with modern LLMs. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
mrope_section(`List(int)`): |
|
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
mrope_section = mrope_section * 2 |
|
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze( |
|
unsqueeze_dim |
|
) |
|
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze( |
|
unsqueeze_dim |
|
) |
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor: |
|
orig_dtype = tensor.dtype |
|
tensor = tensor.float() |
|
cos = freqs.cos() |
|
sin = freqs.sin() |
|
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() |
|
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float() |
|
output = (tensor * cos) + (rotate_half(tensor) * sin) |
|
output = output.to(orig_dtype) |
|
return output |
|
|
|
class VisionRotaryEmbedding(nn.Module): |
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
super().__init__() |
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.outer(seq, self.inv_freq) |
|
return freqs |
|
|
|
class PatchEmbed(nn.Module): |
|
def __init__( |
|
self, |
|
patch_size: int = 14, |
|
temporal_patch_size: int = 2, |
|
in_channels: int = 3, |
|
embed_dim: int = 1152, |
|
) -> None: |
|
super().__init__() |
|
self.patch_size = patch_size |
|
self.temporal_patch_size = temporal_patch_size |
|
self.in_channels = in_channels |
|
self.embed_dim = embed_dim |
|
|
|
kernel_size = [temporal_patch_size, patch_size, patch_size] |
|
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
target_dtype = self.proj.weight.dtype |
|
hidden_states = hidden_states.view( |
|
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size |
|
) |
|
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim) |
|
return hidden_states |
|
|
|
class PatchMerger(nn.Module): |
|
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None: |
|
super().__init__() |
|
self.hidden_size = context_dim * (spatial_merge_size**2) |
|
self.ln_q = LayerNorm(context_dim, eps=1e-6) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(self.hidden_size, self.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(self.hidden_size, dim), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size)) |
|
return x |
|
|
|
class VisionMlp(nn.Module): |
|
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None: |
|
super().__init__() |
|
self.fc1 = nn.Linear(dim, hidden_dim) |
|
self.act = ACT2FN[hidden_act] |
|
self.fc2 = nn.Linear(hidden_dim, dim) |
|
|
|
def forward(self, x) -> torch.Tensor: |
|
return self.fc2(self.act(self.fc1(x))) |
|
|
|
class VisionAttention(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 16) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=True) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
|
|
attention_mask = torch.full( |
|
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype |
|
) |
|
for i in range(1, len(cu_seqlens)): |
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0 |
|
|
|
q = q.transpose(0, 1) |
|
k = k.transpose(0, 1) |
|
v = v.transpose(0, 1) |
|
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim) |
|
attn_weights = attn_weights + attention_mask |
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) |
|
attn_output = torch.matmul(attn_weights, v) |
|
attn_output = attn_output.transpose(0, 1) |
|
attn_output = attn_output.reshape(seq_length, -1) |
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
class VisionFlashAttention2(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 16) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=True) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() |
|
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( |
|
seq_length, -1 |
|
) |
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
class VisionSdpaAttention(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 16) -> None: |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=True) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None |
|
) -> torch.Tensor: |
|
seq_length = hidden_states.shape[0] |
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0) |
|
|
|
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool) |
|
for i in range(1, len(cu_seqlens)): |
|
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True |
|
q = q.transpose(0, 1) |
|
k = k.transpose(0, 1) |
|
v = v.transpose(0, 1) |
|
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0) |
|
attn_output = attn_output.transpose(0, 1) |
|
attn_output = attn_output.reshape(seq_length, -1) |
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
QWEN2_VL_VISION_ATTENTION_CLASSES = { |
|
"eager": VisionAttention, |
|
"flash_attention_2": VisionFlashAttention2, |
|
"sdpa": VisionSdpaAttention, |
|
} |
|
|
|
class Qwen2VLVisionBlock(nn.Module): |
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None: |
|
super().__init__() |
|
self.norm1 = LayerNorm(config.embed_dim, eps=1e-6) |
|
self.norm2 = LayerNorm(config.embed_dim, eps=1e-6) |
|
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio) |
|
|
|
self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation]( |
|
config.embed_dim, num_heads=config.num_heads |
|
) |
|
self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act) |
|
|
|
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor: |
|
hidden_states = hidden_states + self.attn( |
|
self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb |
|
) |
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states)) |
|
return hidden_states |
|
|
|
class Qwen2ViTPreTrainedModel(PreTrainedModel): |
|
config_class = Qwen2VLVisionConfig |
|
_no_split_modules = ["Qwen2VLVisionBlock"] |
|
|
|
def __init__(self, config) -> None: |
|
super().__init__(config) |
|
self.spatial_merge_size = config.spatial_merge_size |
|
|
|
self.patch_embed = PatchEmbed( |
|
patch_size=config.patch_size, |
|
temporal_patch_size=config.temporal_patch_size, |
|
in_channels=config.in_channels, |
|
embed_dim=config.embed_dim, |
|
) |
|
|
|
head_dim = config.embed_dim // config.num_heads |
|
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2) |
|
|
|
self.blocks = nn.ModuleList( |
|
[Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)] |
|
) |
|
self.merger = PatchMerger( |
|
dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size |
|
) |
|
|
|
def get_dtype(self) -> torch.dtype: |
|
return self.blocks[0].mlp.fc2.weight.dtype |
|
|
|
def get_device(self) -> torch.device: |
|
return self.blocks[0].mlp.fc2.weight.device |
|
|
|
def rot_pos_emb(self, grid_thw): |
|
pos_ids = [] |
|
for t, h, w in grid_thw: |
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) |
|
hpos_ids = hpos_ids.reshape( |
|
h // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
w // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
) |
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3) |
|
hpos_ids = hpos_ids.flatten() |
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) |
|
wpos_ids = wpos_ids.reshape( |
|
h // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
w // self.spatial_merge_size, |
|
self.spatial_merge_size, |
|
) |
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3) |
|
wpos_ids = wpos_ids.flatten() |
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) |
|
pos_ids = torch.cat(pos_ids, dim=0) |
|
max_grid_size = grid_thw[:, 1:].max() |
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) |
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) |
|
return rotary_pos_emb |
|
|
|
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.patch_embed(hidden_states) |
|
rotary_pos_emb = self.rot_pos_emb(grid_thw) |
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( |
|
dim=0, dtype=torch.int32 |
|
) |
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
for blk in self.blocks: |
|
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb) |
|
|
|
return self.merger(hidden_states) |
|
|
|
|