File size: 5,955 Bytes
dd9dc6a
 
 
 
 
 
 
 
 
 
fc5c300
 
35add1d
 
 
 
 
 
 
 
fc5c300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd9dc6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
license: llama3
base_model: meta-llama/Meta-Llama-3-70B-Instruct
tags:
- generated_from_trainer
model-index:
- name: outputs/basemodel-llama3-70b.8e6
  results: []
---

shisa-v2 Base Model ablation

This model uses a LR of 8e-6 that slightly improves performance vs the original 2e-5
It also uses NEFTune, although the expected impact may be neglible for this dataset.

(this appears to validate the Llama 3 8B LR ablations for predicting improved LR hyperparameter)

While the last model matched gpt-3.5-turbo, I think it's fair to say that this model allows us to farily say that it "beats" it.


Using a [fork](https://github.com/shisa-ai/shaberi) of [Lightblue's Shaberi benchmark framework](https://github.com/lightblue-tech/japanese_llm_eval):

| Model                                  | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench |
|----------------------------------------|---------|-----------------|----------|--------|-------------|
| gpt-4-turbo-2024-04-09                 | 8.75    | 8.78            | 8.74     | 9.18   | 8.31        |
| CohereForAI/c4ai-command-r-plus        | 7.69    | 7.50            | 7.43     | 9.05   | 6.79        |
| **shisa-ai/shisa-v1-llama3-70b**       | **7.30**| **7.34**        | **7.67** | **8.15** | **6.04**  |
| gpt-3.5-turbo-0125                     | 7.17    | 7.24            | 6.98     | 7.64   | 6.82        |
| **shisa-ai/shisa-v1-llama3-70b**       | **7.17**| **7.16**        | **7.45** | **7.98** | **6.09**  |
| karakuri-ai/karakuri-lm-70b-chat-v0.1  | 6.84    | 6.86            | 6.43     | 7.85   | 6.23        |
| lightblue/ao-karasu-72B                | 6.81    | 7.19            | 6.54     | 7.25   | 6.27        |
| **shisa-ai/shisa-v1-llama3-8b^**       | **6.29**| **6.62**        | **6.41** | **7.05**|**5.07**    |
| shisa-ai/shisa-swallowmx-13a47b-v1     | 6.17    | 6.48            | 6.07     | 7.11   | 5.03        |
| **shisa-ai/shisa-v1-llama3-8b**        | **6.10**| **6.52**        | **6.20** | **6.37**|**5.33**    |
| Rakuten/RakutenAI-7B-chat              | 5.58    | 5.92            | 4.60     | 6.58   | 5.24        |
| shisa-ai/shisa-v1-gemma-8b             | 5.64    | 6.50            | 5.42     | 5.10   | 5.55        |
| augmxnt/shisa-gamma-7b-v1              | 5.56    | 5.84            | 4.00     | 6.73   | 5.68        |
| lightblue/qarasu-14B-chat-plus-unleashed | 5.20  | 5.58            | 4.74     | 5.46   | 5.01        |
| cyberagent/calm2-7b-chat               | 4.76    | 4.90            | 3.58     | 5.75   | 4.81        |
| mistralai/Mistral-7B-Instruct-v0.2     | 4.69    | 5.78            | 4.65     | 3.80   | 4.53        |
| **shisa-ai/shisa-v1-yi1.5-9b**         | **4.63**| **5.98**        | **4.28** | **3.26**|**5.00**    |

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-70B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

# doesn't work...
# hub_model_id: shisa-ai/shisa-llama3-70b-v1
# hub_strategy: end

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-llama3-70b-v1.8e6

chat_template: llama3
datasets:
  - path: augmxnt/ultra-orca-boros-en-ja-v1
    type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/basemodel-llama3-70b.8e6

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

neftune_noise_alpha: 5

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

```

</details><br>

# outputs/basemodel-llama3-70b.8e6

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4440

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 87
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.248         | 0.0033 | 1    | 0.7102          |
| 0.7497        | 0.5008 | 154  | 0.4374          |
| 0.7229        | 1.0016 | 308  | 0.3940          |
| 0.3772        | 1.4862 | 462  | 0.3962          |
| 0.3791        | 1.9870 | 616  | 0.3838          |
| 0.0943        | 2.4699 | 770  | 0.4440          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1