--- license: llama3 base_model: meta-llama/Meta-Llama-3-70B-Instruct tags: - generated_from_trainer model-index: - name: outputs/basemodel-llama3-70b.8e6 results: [] datasets: - augmxnt/ultra-orca-boros-en-ja-v1 --- # shisa-v2 Base Model ablation *Per the Llama 3 Community License Agreement, the official name of this model is "Llama 3 shisa-v1-llama3-70b"* This is a fine-tune Llama 3 70B Instruct with the primary `shisa-v1` dataset to improve Japanese language capabilities. This model uses a LR of 8e-6 that slightly improves performance vs the initial 2e-5 tune (based on and validating predictive power of the the results of the Llama 3 8B LR ablations). It also uses NEFTune, although the expected impact is neglible for this dataset. While the 2e-5 model matched gpt-3.5-turbo performance, this 2e-6 version consistently edges it out, so I think it's fair to say that this model "beats" it. While this is merely a test ablation on the road to `shisa-v2`, as the strongest commercially-usable open JA model benchmarked so far, this model may be of general interest. ## Performance Measured using a [fork](https://github.com/shisa-ai/shaberi) of [Lightblue's Shaberi benchmark framework](https://github.com/lightblue-tech/japanese_llm_eval): | Model | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench | |----------------------------------------|---------|-----------------|----------|--------|-------------| | gpt-4-turbo-2024-04-09 | 8.75 | 8.78 | 8.74 | 9.18 | 8.31 | | gpt-4o-2024-05-13 | 8.72 | 8.88 | 8.69 | 9.15 | 8.16 | | gemini-1.5-pro | 8.58 | 8.58 | 8.93 | 9.20 | 7.61 | | claude-3-opus-20240229 | 8.55 | 8.64 | 8.58 | 8.75 | 8.23 | | CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 | | **shisa-ai/shisa-v1-llama3-70b** | **7.30**| **7.34** | **7.67** | **8.15** | **6.04** | | gpt-3.5-turbo-0125 | 7.17 | 7.24 | 6.98 | 7.64 | 6.82 | | **shisa-ai/shisa-v1-llama3-70b.2e5** | **7.17**| **7.16** | **7.45** | **7.98** | **6.09** | | karakuri-ai/karakuri-lm-8x7b-chat-v0.1 | 7.00 | 7.18 | 6.30 | 7.98 | 6.55 | | karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 | | lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 | | **shisa-ai/shisa-v1-llama3-8b** | **6.59**| **6.67** | **6.95** | **7.05**| **5.68** | | **shisa-ai/shisa-v1-llama3-8b.2e5** | **6.29**| **6.62** | **6.41** | **7.05**| **5.07** | | **shisa-ai/shisa-swallowmx-13a47b-v1** | **6.17**| **6.48** | **6.07** | **7.11**| **5.03** | | lightblue/suzume-llama-3-8B-japanese | 5.96 | 6.68 | 4.96 | 6.68 | 5.53 | | augmxnt/shisa-gamma-7b-v1 | 5.82 | 5.96 | 5.02 | 6.85 | 5.47 | | **shisa-ai/shisa-v1-phi3-14b** | **5.77**| **6.28** | **5.26** | **6.55**| **5.01** | | **shisa-ai/shisa-v1-gemma-8b** | **5.64**| **6.50** | **5.42** | **5.10**| **5.55** | | Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 | | lightblue/qarasu-14B-chat-plus-unleashed | 5.20 | 5.58 | 4.74 | 5.46 | 5.01 | | **shisa-ai/shisa-v1-mistral0.3-7b** | **5.11**| **5.64** | **6.10** | **3.83**|**4.86** | | cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 | | mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 | | **shisa-ai/shisa-v1-yi1.5-9b** | **4.63**| **5.98** | **4.28** | **3.26**|**5.00** | | augmxnt/shisa-7b-v1 | 4.50 | 4.63 | 3.95 | 4.89 | 4.53 | [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-70B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false # doesn't work... # hub_model_id: shisa-ai/shisa-llama3-70b-v1 # hub_strategy: end use_wandb: true wandb_project: shisa-v2 wandb_entity: augmxnt wandb_name: shisa-llama3-70b-v1.8e6 chat_template: llama3 datasets: - path: augmxnt/ultra-orca-boros-en-ja-v1 type: sharegpt dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/basemodel-llama3-70b.8e6 sequence_len: 4096 sample_packing: true pad_to_sequence_len: true neftune_noise_alpha: 5 gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: linear learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 0 debug: deepspeed: axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.05 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/basemodel-llama3-70b.8e6 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 87 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.248 | 0.0033 | 1 | 0.7102 | | 0.7497 | 0.5008 | 154 | 0.4374 | | 0.7229 | 1.0016 | 308 | 0.3940 | | 0.3772 | 1.4862 | 462 | 0.3962 | | 0.3791 | 1.9870 | 616 | 0.3838 | | 0.0943 | 2.4699 | 770 | 0.4440 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1