File size: 6,377 Bytes
e419dcd
 
 
 
 
 
 
 
 
431ebdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e419dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
tags:
- generated_from_trainer
model-index:
- name: outputs/mistral
  results: []
---
This abalation underperforms the tried and true [augmxnt/shisa-gamma-7b-v1](https://huggingface.co/augmxnt/shisa-gamma-7b-v1) and if you're looking for a Mistral 7B based model, you should probably go with that.


## Performance
Measured using a [fork](https://github.com/shisa-ai/shaberi) of [Lightblue's Shaberi benchmark framework](https://github.com/lightblue-tech/japanese_llm_eval):

| Model                                  | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench |
|----------------------------------------|---------|-----------------|----------|--------|-------------|
| gpt-4-turbo-2024-04-09                 | 8.75    | 8.78            | 8.74     | 9.18   | 8.31        |
| gpt-4o-2024-05-13                      | 8.72    | 8.88            | 8.69     | 9.15   | 8.16        |
| gemini-1.5-pro                         | 8.58    | 8.58            | 8.93     | 9.20   | 7.61        |
| claude-3-opus-20240229                 | 8.55    | 8.64            | 8.58     | 8.75   | 8.23        |
| CohereForAI/c4ai-command-r-plus        | 7.69    | 7.50            | 7.43     | 9.05   | 6.79        |
| **shisa-ai/shisa-v1-llama3-70b**       | **7.30**| **7.34**        | **7.67** | **8.15** | **6.04**  |
| gpt-3.5-turbo-0125                     | 7.17    | 7.24            | 6.98     | 7.64   | 6.82        |
| **shisa-ai/shisa-v1-llama3-70b.2e5**   | **7.17**| **7.16**        | **7.45** | **7.98** | **6.09**  |
| karakuri-ai/karakuri-lm-8x7b-chat-v0.1 | 7.00    | 7.18            | 6.30     | 7.98   | 6.55        |
| karakuri-ai/karakuri-lm-70b-chat-v0.1  | 6.84    | 6.86            | 6.43     | 7.85   | 6.23        |
| lightblue/ao-karasu-72B                | 6.81    | 7.19            | 6.54     | 7.25   | 6.27        |
| **shisa-ai/shisa-v1-llama3-8b**        | **6.59**| **6.67**        | **6.95** | **7.05**| **5.68**   |
| microsoft/Phi-3-medium-128k-instruct   | 6.48    | 7.10            | 5.92     | 6.84   | 6.04        | 
| **shisa-ai/shisa-swallowmx-13a47b-v1** | **6.17**| **6.48**        | **6.07** | **7.11**| **5.03**   |
| lightblue/suzume-llama-3-8B-japanese   | 5.96    | 6.68            | 4.96     | 6.68   | 5.53        |
| augmxnt/shisa-gamma-7b-v1              | 5.82    | 5.96            | 5.02     | 6.85   | 5.47        |
| **shisa-ai/shisa-v1-phi3-14b**         | **5.77**| **6.28**        | **5.26** | **6.55**| **5.01**   |
| **shisa-ai/shisa-v1-gemma-8b**         | **5.64**| **6.50**        | **5.42** | **5.10**| **5.55**   |
| Rakuten/RakutenAI-7B-chat              | 5.58    | 5.92            | 4.60     | 6.58   | 5.24        |
| lightblue/qarasu-14B-chat-plus-unleashed | 5.20  | 5.58            | 4.74     | 5.46   | 5.01        |
| **shisa-ai/shisa-v1-mistral0.3-7b**    | **5.11**| **5.64**        | **6.10** | **3.83**|**4.86**    |
| cyberagent/calm2-7b-chat               | 4.76    | 4.90            | 3.58     | 5.75   | 4.81        |
| mistralai/Mistral-7B-Instruct-v0.2     | 4.69    | 5.78            | 4.65     | 3.80   | 4.53        |
| **shisa-ai/shisa-v1-yi1.5-9b**         | **4.63**| **5.98**        | **4.28** | **3.26**|**5.00**    |
| augmxnt/shisa-7b-v1                    | 4.50    | 4.63            | 3.95     | 4.89   | 4.53        |

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-Instruct-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: inst
datasets:
  - path: augmxnt/ultra-orca-boros-en-ja-v1
    type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/mistral

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-mistral0.3-7b

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

```

</details><br>

# outputs/mistral

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3791

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8564        | 0.0045 | 1    | 0.7107          |
| 0.6131        | 0.5023 | 111  | 0.4259          |
| 0.6077        | 1.0045 | 222  | 0.3715          |
| 0.4173        | 1.4932 | 333  | 0.3617          |
| 0.3812        | 1.9955 | 444  | 0.3468          |
| 0.2408        | 2.4842 | 555  | 0.3791          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1