File size: 6,377 Bytes
e419dcd 431ebdb e419dcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
tags:
- generated_from_trainer
model-index:
- name: outputs/mistral
results: []
---
This abalation underperforms the tried and true [augmxnt/shisa-gamma-7b-v1](https://huggingface.co/augmxnt/shisa-gamma-7b-v1) and if you're looking for a Mistral 7B based model, you should probably go with that.
## Performance
Measured using a [fork](https://github.com/shisa-ai/shaberi) of [Lightblue's Shaberi benchmark framework](https://github.com/lightblue-tech/japanese_llm_eval):
| Model | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench |
|----------------------------------------|---------|-----------------|----------|--------|-------------|
| gpt-4-turbo-2024-04-09 | 8.75 | 8.78 | 8.74 | 9.18 | 8.31 |
| gpt-4o-2024-05-13 | 8.72 | 8.88 | 8.69 | 9.15 | 8.16 |
| gemini-1.5-pro | 8.58 | 8.58 | 8.93 | 9.20 | 7.61 |
| claude-3-opus-20240229 | 8.55 | 8.64 | 8.58 | 8.75 | 8.23 |
| CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 |
| **shisa-ai/shisa-v1-llama3-70b** | **7.30**| **7.34** | **7.67** | **8.15** | **6.04** |
| gpt-3.5-turbo-0125 | 7.17 | 7.24 | 6.98 | 7.64 | 6.82 |
| **shisa-ai/shisa-v1-llama3-70b.2e5** | **7.17**| **7.16** | **7.45** | **7.98** | **6.09** |
| karakuri-ai/karakuri-lm-8x7b-chat-v0.1 | 7.00 | 7.18 | 6.30 | 7.98 | 6.55 |
| karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 |
| lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 |
| **shisa-ai/shisa-v1-llama3-8b** | **6.59**| **6.67** | **6.95** | **7.05**| **5.68** |
| microsoft/Phi-3-medium-128k-instruct | 6.48 | 7.10 | 5.92 | 6.84 | 6.04 |
| **shisa-ai/shisa-swallowmx-13a47b-v1** | **6.17**| **6.48** | **6.07** | **7.11**| **5.03** |
| lightblue/suzume-llama-3-8B-japanese | 5.96 | 6.68 | 4.96 | 6.68 | 5.53 |
| augmxnt/shisa-gamma-7b-v1 | 5.82 | 5.96 | 5.02 | 6.85 | 5.47 |
| **shisa-ai/shisa-v1-phi3-14b** | **5.77**| **6.28** | **5.26** | **6.55**| **5.01** |
| **shisa-ai/shisa-v1-gemma-8b** | **5.64**| **6.50** | **5.42** | **5.10**| **5.55** |
| Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 |
| lightblue/qarasu-14B-chat-plus-unleashed | 5.20 | 5.58 | 4.74 | 5.46 | 5.01 |
| **shisa-ai/shisa-v1-mistral0.3-7b** | **5.11**| **5.64** | **6.10** | **3.83**|**4.86** |
| cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 |
| mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 |
| **shisa-ai/shisa-v1-yi1.5-9b** | **4.63**| **5.98** | **4.28** | **3.26**|**5.00** |
| augmxnt/shisa-7b-v1 | 4.50 | 4.63 | 3.95 | 4.89 | 4.53 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-Instruct-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: inst
datasets:
- path: augmxnt/ultra-orca-boros-en-ja-v1
type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/mistral
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-mistral0.3-7b
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# outputs/mistral
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8564 | 0.0045 | 1 | 0.7107 |
| 0.6131 | 0.5023 | 111 | 0.4259 |
| 0.6077 | 1.0045 | 222 | 0.3715 |
| 0.4173 | 1.4932 | 333 | 0.3617 |
| 0.3812 | 1.9955 | 444 | 0.3468 |
| 0.2408 | 2.4842 | 555 | 0.3791 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|