---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
tags:
- generated_from_trainer
model-index:
- name: outputs/mistral
results: []
---
This abalation underperforms the tried and true [augmxnt/shisa-gamma-7b-v1](https://huggingface.co/augmxnt/shisa-gamma-7b-v1) and if you're looking for a Mistral 7B based model, you should probably go with that.
## Performance
Measured using a [fork](https://github.com/shisa-ai/shaberi) of [Lightblue's Shaberi benchmark framework](https://github.com/lightblue-tech/japanese_llm_eval):
| Model | Average | ELYZA-tasks-100 | MT-Bench | Rakuda | Tengu-Bench |
|----------------------------------------|---------|-----------------|----------|--------|-------------|
| gpt-4-turbo-2024-04-09 | 8.75 | 8.78 | 8.74 | 9.18 | 8.31 |
| gpt-4o-2024-05-13 | 8.72 | 8.88 | 8.69 | 9.15 | 8.16 |
| gemini-1.5-pro | 8.58 | 8.58 | 8.93 | 9.20 | 7.61 |
| claude-3-opus-20240229 | 8.55 | 8.64 | 8.58 | 8.75 | 8.23 |
| CohereForAI/c4ai-command-r-plus | 7.69 | 7.50 | 7.43 | 9.05 | 6.79 |
| **shisa-ai/shisa-v1-llama3-70b** | **7.30**| **7.34** | **7.67** | **8.15** | **6.04** |
| gpt-3.5-turbo-0125 | 7.17 | 7.24 | 6.98 | 7.64 | 6.82 |
| **shisa-ai/shisa-v1-llama3-70b.2e5** | **7.17**| **7.16** | **7.45** | **7.98** | **6.09** |
| karakuri-ai/karakuri-lm-8x7b-chat-v0.1 | 7.00 | 7.18 | 6.30 | 7.98 | 6.55 |
| karakuri-ai/karakuri-lm-70b-chat-v0.1 | 6.84 | 6.86 | 6.43 | 7.85 | 6.23 |
| lightblue/ao-karasu-72B | 6.81 | 7.19 | 6.54 | 7.25 | 6.27 |
| **shisa-ai/shisa-v1-llama3-8b** | **6.59**| **6.67** | **6.95** | **7.05**| **5.68** |
| microsoft/Phi-3-medium-128k-instruct | 6.48 | 7.10 | 5.92 | 6.84 | 6.04 |
| **shisa-ai/shisa-swallowmx-13a47b-v1** | **6.17**| **6.48** | **6.07** | **7.11**| **5.03** |
| lightblue/suzume-llama-3-8B-japanese | 5.96 | 6.68 | 4.96 | 6.68 | 5.53 |
| augmxnt/shisa-gamma-7b-v1 | 5.82 | 5.96 | 5.02 | 6.85 | 5.47 |
| **shisa-ai/shisa-v1-phi3-14b** | **5.77**| **6.28** | **5.26** | **6.55**| **5.01** |
| **shisa-ai/shisa-v1-gemma-8b** | **5.64**| **6.50** | **5.42** | **5.10**| **5.55** |
| Rakuten/RakutenAI-7B-chat | 5.58 | 5.92 | 4.60 | 6.58 | 5.24 |
| lightblue/qarasu-14B-chat-plus-unleashed | 5.20 | 5.58 | 4.74 | 5.46 | 5.01 |
| **shisa-ai/shisa-v1-mistral0.3-7b** | **5.11**| **5.64** | **6.10** | **3.83**|**4.86** |
| cyberagent/calm2-7b-chat | 4.76 | 4.90 | 3.58 | 5.75 | 4.81 |
| mistralai/Mistral-7B-Instruct-v0.2 | 4.69 | 5.78 | 4.65 | 3.80 | 4.53 |
| **shisa-ai/shisa-v1-yi1.5-9b** | **4.63**| **5.98** | **4.28** | **3.26**|**5.00** |
| augmxnt/shisa-7b-v1 | 4.50 | 4.63 | 3.95 | 4.89 | 4.53 |
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-Instruct-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: inst
datasets:
- path: augmxnt/ultra-orca-boros-en-ja-v1
type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/mistral
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-v1-mistral0.3-7b
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# outputs/mistral
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8564 | 0.0045 | 1 | 0.7107 |
| 0.6131 | 0.5023 | 111 | 0.4259 |
| 0.6077 | 1.0045 | 222 | 0.3715 |
| 0.4173 | 1.4932 | 333 | 0.3617 |
| 0.3812 | 1.9955 | 444 | 0.3468 |
| 0.2408 | 2.4842 | 555 | 0.3791 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1