shiv6891 commited on
Commit
5d31065
1 Parent(s): 64e553b

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:5749
10
+ - loss:CosineSimilarityLoss
11
+ base_model: distilbert/distilbert-base-uncased
12
+ widget:
13
+ - source_sentence: A chef is preparing some food.
14
+ sentences:
15
+ - Five birds stand on the snow.
16
+ - A chef prepared a meal.
17
+ - There is no 'still' that is not relative to some other object.
18
+ - source_sentence: A woman is adding oil on fishes.
19
+ sentences:
20
+ - Large cruise ship floating on the water.
21
+ - It refers to the maximum f-stop (which is defined as the ratio of focal length
22
+ to effective aperture diameter).
23
+ - The woman is cutting potatoes.
24
+ - source_sentence: The player shoots the winning points.
25
+ sentences:
26
+ - Minimum wage laws hurt the least skilled, least productive the most.
27
+ - The basketball player is about to score points for his team.
28
+ - Three televisions, on on the floor, the other two on a box.
29
+ - source_sentence: Stars form in star-formation regions, which itself develop from
30
+ molecular clouds.
31
+ sentences:
32
+ - Although I believe Searle is mistaken, I don't think you have found the problem.
33
+ - It may be possible for a solar system like ours to exist outside of a galaxy.
34
+ - A blond-haired child performing on the trumpet in front of a house while his younger
35
+ brother watches.
36
+ - source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
37
+ consort, the King has always been the sovereign.
38
+ sentences:
39
+ - At first, I thought this is a bit of a tricky question.
40
+ - A man plays the guitar.
41
+ - There is a very good reason not to refer to the Queen's spouse as "King" - because
42
+ they aren't the King.
43
+ datasets:
44
+ - sentence-transformers/stsb
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - pearson_cosine
49
+ - spearman_cosine
50
+ - pearson_manhattan
51
+ - spearman_manhattan
52
+ - pearson_euclidean
53
+ - spearman_euclidean
54
+ - pearson_dot
55
+ - spearman_dot
56
+ - pearson_max
57
+ - spearman_max
58
+ model-index:
59
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
60
+ results:
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: sts dev
66
+ type: sts-dev
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.8642291085749003
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.8636290802416872
73
+ name: Spearman Cosine
74
+ - type: pearson_manhattan
75
+ value: 0.8285008772089413
76
+ name: Pearson Manhattan
77
+ - type: spearman_manhattan
78
+ value: 0.8321865716910823
79
+ name: Spearman Manhattan
80
+ - type: pearson_euclidean
81
+ value: 0.8282551946034169
82
+ name: Pearson Euclidean
83
+ - type: spearman_euclidean
84
+ value: 0.8319694808458404
85
+ name: Spearman Euclidean
86
+ - type: pearson_dot
87
+ value: 0.8066221081863567
88
+ name: Pearson Dot
89
+ - type: spearman_dot
90
+ value: 0.8118286714489834
91
+ name: Spearman Dot
92
+ - type: pearson_max
93
+ value: 0.8642291085749003
94
+ name: Pearson Max
95
+ - type: spearman_max
96
+ value: 0.8636290802416872
97
+ name: Spearman Max
98
+ - task:
99
+ type: semantic-similarity
100
+ name: Semantic Similarity
101
+ dataset:
102
+ name: sts test
103
+ type: sts-test
104
+ metrics:
105
+ - type: pearson_cosine
106
+ value: 0.8339083420351525
107
+ name: Pearson Cosine
108
+ - type: spearman_cosine
109
+ value: 0.8346187566753029
110
+ name: Spearman Cosine
111
+ - type: pearson_manhattan
112
+ value: 0.8243304551282445
113
+ name: Pearson Manhattan
114
+ - type: spearman_manhattan
115
+ value: 0.8251545390799336
116
+ name: Spearman Manhattan
117
+ - type: pearson_euclidean
118
+ value: 0.8249118733526408
119
+ name: Pearson Euclidean
120
+ - type: spearman_euclidean
121
+ value: 0.8257057361002418
122
+ name: Spearman Euclidean
123
+ - type: pearson_dot
124
+ value: 0.7439130269469807
125
+ name: Pearson Dot
126
+ - type: spearman_dot
127
+ value: 0.7388413905485505
128
+ name: Spearman Dot
129
+ - type: pearson_max
130
+ value: 0.8339083420351525
131
+ name: Pearson Max
132
+ - type: spearman_max
133
+ value: 0.8346187566753029
134
+ name: Spearman Max
135
+ ---
136
+
137
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
138
+
139
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
140
+
141
+ ## Model Details
142
+
143
+ ### Model Description
144
+ - **Model Type:** Sentence Transformer
145
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
146
+ - **Maximum Sequence Length:** 512 tokens
147
+ - **Output Dimensionality:** 768 tokens
148
+ - **Similarity Function:** Cosine Similarity
149
+ - **Training Dataset:**
150
+ - [stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
151
+ - **Language:** en
152
+ <!-- - **License:** Unknown -->
153
+
154
+ ### Model Sources
155
+
156
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
157
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
158
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
159
+
160
+ ### Full Model Architecture
161
+
162
+ ```
163
+ SentenceTransformer(
164
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
165
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
166
+ )
167
+ ```
168
+
169
+ ## Usage
170
+
171
+ ### Direct Usage (Sentence Transformers)
172
+
173
+ First install the Sentence Transformers library:
174
+
175
+ ```bash
176
+ pip install -U sentence-transformers
177
+ ```
178
+
179
+ Then you can load this model and run inference.
180
+ ```python
181
+ from sentence_transformers import SentenceTransformer
182
+
183
+ # Download from the 🤗 Hub
184
+ model = SentenceTransformer("shiv6891/distilbert-base-uncased-sts")
185
+ # Run inference
186
+ sentences = [
187
+ 'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
188
+ 'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
189
+ 'A man plays the guitar.',
190
+ ]
191
+ embeddings = model.encode(sentences)
192
+ print(embeddings.shape)
193
+ # [3, 768]
194
+
195
+ # Get the similarity scores for the embeddings
196
+ similarities = model.similarity(embeddings, embeddings)
197
+ print(similarities.shape)
198
+ # [3, 3]
199
+ ```
200
+
201
+ <!--
202
+ ### Direct Usage (Transformers)
203
+
204
+ <details><summary>Click to see the direct usage in Transformers</summary>
205
+
206
+ </details>
207
+ -->
208
+
209
+ <!--
210
+ ### Downstream Usage (Sentence Transformers)
211
+
212
+ You can finetune this model on your own dataset.
213
+
214
+ <details><summary>Click to expand</summary>
215
+
216
+ </details>
217
+ -->
218
+
219
+ <!--
220
+ ### Out-of-Scope Use
221
+
222
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
223
+ -->
224
+
225
+ ## Evaluation
226
+
227
+ ### Metrics
228
+
229
+ #### Semantic Similarity
230
+ * Dataset: `sts-dev`
231
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
232
+
233
+ | Metric | Value |
234
+ |:--------------------|:-----------|
235
+ | pearson_cosine | 0.8642 |
236
+ | **spearman_cosine** | **0.8636** |
237
+ | pearson_manhattan | 0.8285 |
238
+ | spearman_manhattan | 0.8322 |
239
+ | pearson_euclidean | 0.8283 |
240
+ | spearman_euclidean | 0.832 |
241
+ | pearson_dot | 0.8066 |
242
+ | spearman_dot | 0.8118 |
243
+ | pearson_max | 0.8642 |
244
+ | spearman_max | 0.8636 |
245
+
246
+ #### Semantic Similarity
247
+ * Dataset: `sts-test`
248
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
249
+
250
+ | Metric | Value |
251
+ |:--------------------|:-----------|
252
+ | pearson_cosine | 0.8339 |
253
+ | **spearman_cosine** | **0.8346** |
254
+ | pearson_manhattan | 0.8243 |
255
+ | spearman_manhattan | 0.8252 |
256
+ | pearson_euclidean | 0.8249 |
257
+ | spearman_euclidean | 0.8257 |
258
+ | pearson_dot | 0.7439 |
259
+ | spearman_dot | 0.7388 |
260
+ | pearson_max | 0.8339 |
261
+ | spearman_max | 0.8346 |
262
+
263
+ <!--
264
+ ## Bias, Risks and Limitations
265
+
266
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
267
+ -->
268
+
269
+ <!--
270
+ ### Recommendations
271
+
272
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
273
+ -->
274
+
275
+ ## Training Details
276
+
277
+ ### Training Dataset
278
+
279
+ #### stsb
280
+
281
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
282
+ * Size: 5,749 training samples
283
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
284
+ * Approximate statistics based on the first 1000 samples:
285
+ | | sentence1 | sentence2 | score |
286
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
287
+ | type | string | string | float |
288
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
289
+ * Samples:
290
+ | sentence1 | sentence2 | score |
291
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
292
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
293
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
294
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
295
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
296
+ ```json
297
+ {
298
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
299
+ }
300
+ ```
301
+
302
+ ### Evaluation Dataset
303
+
304
+ #### stsb
305
+
306
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
307
+ * Size: 1,500 evaluation samples
308
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
309
+ * Approximate statistics based on the first 1000 samples:
310
+ | | sentence1 | sentence2 | score |
311
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
312
+ | type | string | string | float |
313
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
314
+ * Samples:
315
+ | sentence1 | sentence2 | score |
316
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
317
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
318
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
319
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
320
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
321
+ ```json
322
+ {
323
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
324
+ }
325
+ ```
326
+
327
+ ### Training Hyperparameters
328
+ #### Non-Default Hyperparameters
329
+
330
+ - `eval_strategy`: steps
331
+ - `per_device_train_batch_size`: 16
332
+ - `per_device_eval_batch_size`: 16
333
+ - `num_train_epochs`: 4
334
+ - `warmup_ratio`: 0.1
335
+ - `fp16`: True
336
+
337
+ #### All Hyperparameters
338
+ <details><summary>Click to expand</summary>
339
+
340
+ - `overwrite_output_dir`: False
341
+ - `do_predict`: False
342
+ - `eval_strategy`: steps
343
+ - `prediction_loss_only`: True
344
+ - `per_device_train_batch_size`: 16
345
+ - `per_device_eval_batch_size`: 16
346
+ - `per_gpu_train_batch_size`: None
347
+ - `per_gpu_eval_batch_size`: None
348
+ - `gradient_accumulation_steps`: 1
349
+ - `eval_accumulation_steps`: None
350
+ - `torch_empty_cache_steps`: None
351
+ - `learning_rate`: 5e-05
352
+ - `weight_decay`: 0.0
353
+ - `adam_beta1`: 0.9
354
+ - `adam_beta2`: 0.999
355
+ - `adam_epsilon`: 1e-08
356
+ - `max_grad_norm`: 1.0
357
+ - `num_train_epochs`: 4
358
+ - `max_steps`: -1
359
+ - `lr_scheduler_type`: linear
360
+ - `lr_scheduler_kwargs`: {}
361
+ - `warmup_ratio`: 0.1
362
+ - `warmup_steps`: 0
363
+ - `log_level`: passive
364
+ - `log_level_replica`: warning
365
+ - `log_on_each_node`: True
366
+ - `logging_nan_inf_filter`: True
367
+ - `save_safetensors`: True
368
+ - `save_on_each_node`: False
369
+ - `save_only_model`: False
370
+ - `restore_callback_states_from_checkpoint`: False
371
+ - `no_cuda`: False
372
+ - `use_cpu`: False
373
+ - `use_mps_device`: False
374
+ - `seed`: 42
375
+ - `data_seed`: None
376
+ - `jit_mode_eval`: False
377
+ - `use_ipex`: False
378
+ - `bf16`: False
379
+ - `fp16`: True
380
+ - `fp16_opt_level`: O1
381
+ - `half_precision_backend`: auto
382
+ - `bf16_full_eval`: False
383
+ - `fp16_full_eval`: False
384
+ - `tf32`: None
385
+ - `local_rank`: 0
386
+ - `ddp_backend`: None
387
+ - `tpu_num_cores`: None
388
+ - `tpu_metrics_debug`: False
389
+ - `debug`: []
390
+ - `dataloader_drop_last`: False
391
+ - `dataloader_num_workers`: 0
392
+ - `dataloader_prefetch_factor`: None
393
+ - `past_index`: -1
394
+ - `disable_tqdm`: False
395
+ - `remove_unused_columns`: True
396
+ - `label_names`: None
397
+ - `load_best_model_at_end`: False
398
+ - `ignore_data_skip`: False
399
+ - `fsdp`: []
400
+ - `fsdp_min_num_params`: 0
401
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
402
+ - `fsdp_transformer_layer_cls_to_wrap`: None
403
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
404
+ - `deepspeed`: None
405
+ - `label_smoothing_factor`: 0.0
406
+ - `optim`: adamw_torch
407
+ - `optim_args`: None
408
+ - `adafactor`: False
409
+ - `group_by_length`: False
410
+ - `length_column_name`: length
411
+ - `ddp_find_unused_parameters`: None
412
+ - `ddp_bucket_cap_mb`: None
413
+ - `ddp_broadcast_buffers`: False
414
+ - `dataloader_pin_memory`: True
415
+ - `dataloader_persistent_workers`: False
416
+ - `skip_memory_metrics`: True
417
+ - `use_legacy_prediction_loop`: False
418
+ - `push_to_hub`: False
419
+ - `resume_from_checkpoint`: None
420
+ - `hub_model_id`: None
421
+ - `hub_strategy`: every_save
422
+ - `hub_private_repo`: False
423
+ - `hub_always_push`: False
424
+ - `gradient_checkpointing`: False
425
+ - `gradient_checkpointing_kwargs`: None
426
+ - `include_inputs_for_metrics`: False
427
+ - `eval_do_concat_batches`: True
428
+ - `fp16_backend`: auto
429
+ - `push_to_hub_model_id`: None
430
+ - `push_to_hub_organization`: None
431
+ - `mp_parameters`:
432
+ - `auto_find_batch_size`: False
433
+ - `full_determinism`: False
434
+ - `torchdynamo`: None
435
+ - `ray_scope`: last
436
+ - `ddp_timeout`: 1800
437
+ - `torch_compile`: False
438
+ - `torch_compile_backend`: None
439
+ - `torch_compile_mode`: None
440
+ - `dispatch_batches`: None
441
+ - `split_batches`: None
442
+ - `include_tokens_per_second`: False
443
+ - `include_num_input_tokens_seen`: False
444
+ - `neftune_noise_alpha`: None
445
+ - `optim_target_modules`: None
446
+ - `batch_eval_metrics`: False
447
+ - `eval_on_start`: False
448
+ - `use_liger_kernel`: False
449
+ - `eval_use_gather_object`: False
450
+ - `batch_sampler`: batch_sampler
451
+ - `multi_dataset_batch_sampler`: proportional
452
+
453
+ </details>
454
+
455
+ ### Training Logs
456
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
457
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
458
+ | 1.1111 | 100 | 0.054 | 0.0294 | 0.8499 | - |
459
+ | 2.2222 | 200 | 0.0142 | 0.0257 | 0.8647 | - |
460
+ | 3.3333 | 300 | 0.0073 | 0.0261 | 0.8636 | - |
461
+ | 4.0 | 360 | - | - | - | 0.8346 |
462
+
463
+
464
+ ### Framework Versions
465
+ - Python: 3.11.5
466
+ - Sentence Transformers: 3.1.1
467
+ - Transformers: 4.45.2
468
+ - PyTorch: 2.3.1+cu121
469
+ - Accelerate: 0.31.0
470
+ - Datasets: 2.19.1
471
+ - Tokenizers: 0.20.3
472
+
473
+ ## Citation
474
+
475
+ ### BibTeX
476
+
477
+ #### Sentence Transformers
478
+ ```bibtex
479
+ @inproceedings{reimers-2019-sentence-bert,
480
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
481
+ author = "Reimers, Nils and Gurevych, Iryna",
482
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
483
+ month = "11",
484
+ year = "2019",
485
+ publisher = "Association for Computational Linguistics",
486
+ url = "https://arxiv.org/abs/1908.10084",
487
+ }
488
+ ```
489
+
490
+ <!--
491
+ ## Glossary
492
+
493
+ *Clearly define terms in order to be accessible across audiences.*
494
+ -->
495
+
496
+ <!--
497
+ ## Model Card Authors
498
+
499
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
500
+ -->
501
+
502
+ <!--
503
+ ## Model Card Contact
504
+
505
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
506
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91dfa784350f6ec5e68e8066f3249bc7c4ba1815911859e97f474f0edb3fe2c5
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff