File size: 1,779 Bytes
3f6c6e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
tags:
- generated_from_trainer
model-index:
- name: bloom-560m-finetuned-liability-700_length-QA5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bloom-560m-finetuned-liability-700_length-QA5

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9256

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2939        | 0.98  | 29   | 1.5512          |
| 0.3478        | 2.0   | 59   | 1.5154          |
| 0.3055        | 2.98  | 88   | 1.4945          |
| 0.2324        | 4.0   | 118  | 1.5501          |
| 0.1853        | 4.98  | 147  | 1.7230          |
| 0.1676        | 6.0   | 177  | 1.7146          |
| 0.1483        | 6.98  | 206  | 1.8510          |
| 0.121         | 8.0   | 236  | 1.8573          |
| 0.1115        | 8.98  | 265  | 1.9207          |
| 0.0641        | 9.83  | 290  | 1.9256          |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3