|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Tweet Eval Datasets""" |
|
|
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{barbieri2020tweeteval, |
|
title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}}, |
|
author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo}, |
|
booktitle={Proceedings of Findings of EMNLP}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/cardiffnlp/tweeteval" |
|
|
|
_LICENSE = "" |
|
|
|
URL = "https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/" |
|
|
|
_URLs = { |
|
"emoji": { |
|
"train_text": URL + "emoji/train_text.txt", |
|
"train_labels": URL + "emoji/train_labels.txt", |
|
"test_text": URL + "emoji/test_text.txt", |
|
"test_labels": URL + "emoji/test_labels.txt", |
|
"val_text": URL + "emoji/val_text.txt", |
|
"val_labels": URL + "emoji/val_labels.txt", |
|
}, |
|
"emotion": { |
|
"train_text": URL + "emotion/train_text.txt", |
|
"train_labels": URL + "emotion/train_labels.txt", |
|
"test_text": URL + "emotion/test_text.txt", |
|
"test_labels": URL + "emotion/test_labels.txt", |
|
"val_text": URL + "emotion/val_text.txt", |
|
"val_labels": URL + "emotion/val_labels.txt", |
|
}, |
|
"hate": { |
|
"train_text": URL + "hate/train_text.txt", |
|
"train_labels": URL + "hate/train_labels.txt", |
|
"test_text": URL + "hate/test_text.txt", |
|
"test_labels": URL + "hate/test_labels.txt", |
|
"val_text": URL + "hate/val_text.txt", |
|
"val_labels": URL + "hate/val_labels.txt", |
|
}, |
|
"irony": { |
|
"train_text": URL + "irony/train_text.txt", |
|
"train_labels": URL + "irony/train_labels.txt", |
|
"test_text": URL + "irony/test_text.txt", |
|
"test_labels": URL + "irony/test_labels.txt", |
|
"val_text": URL + "irony/val_text.txt", |
|
"val_labels": URL + "irony/val_labels.txt", |
|
}, |
|
"offensive": { |
|
"train_text": URL + "offensive/train_text.txt", |
|
"train_labels": URL + "offensive/train_labels.txt", |
|
"test_text": URL + "offensive/test_text.txt", |
|
"test_labels": URL + "offensive/test_labels.txt", |
|
"val_text": URL + "offensive/val_text.txt", |
|
"val_labels": URL + "offensive/val_labels.txt", |
|
}, |
|
"sentiment": { |
|
"train_text": URL + "sentiment/train_text.txt", |
|
"train_labels": URL + "sentiment/train_labels.txt", |
|
"test_text": URL + "sentiment/test_text.txt", |
|
"test_labels": URL + "sentiment/test_labels.txt", |
|
"val_text": URL + "sentiment/val_text.txt", |
|
"val_labels": URL + "sentiment/val_labels.txt", |
|
}, |
|
"stance": { |
|
"abortion": { |
|
"train_text": URL + "stance/abortion/train_text.txt", |
|
"train_labels": URL + "stance/abortion/train_labels.txt", |
|
"test_text": URL + "stance/abortion/test_text.txt", |
|
"test_labels": URL + "stance/abortion/test_labels.txt", |
|
"val_text": URL + "stance/abortion/val_text.txt", |
|
"val_labels": URL + "stance/abortion/val_labels.txt", |
|
}, |
|
"atheism": { |
|
"train_text": URL + "stance/atheism/train_text.txt", |
|
"train_labels": URL + "stance/atheism/train_labels.txt", |
|
"test_text": URL + "stance/atheism/test_text.txt", |
|
"test_labels": URL + "stance/atheism/test_labels.txt", |
|
"val_text": URL + "stance/atheism/val_text.txt", |
|
"val_labels": URL + "stance/atheism/val_labels.txt", |
|
}, |
|
"climate": { |
|
"train_text": URL + "stance/climate/train_text.txt", |
|
"train_labels": URL + "stance/climate/train_labels.txt", |
|
"test_text": URL + "stance/climate/test_text.txt", |
|
"test_labels": URL + "stance/climate/test_labels.txt", |
|
"val_text": URL + "stance/climate/val_text.txt", |
|
"val_labels": URL + "stance/climate/val_labels.txt", |
|
}, |
|
"feminist": { |
|
"train_text": URL + "stance/feminist/train_text.txt", |
|
"train_labels": URL + "stance/feminist/train_labels.txt", |
|
"test_text": URL + "stance/feminist/test_text.txt", |
|
"test_labels": URL + "stance/feminist/test_labels.txt", |
|
"val_text": URL + "stance/feminist/val_text.txt", |
|
"val_labels": URL + "stance/feminist/val_labels.txt", |
|
}, |
|
"hillary": { |
|
"train_text": URL + "stance/hillary/train_text.txt", |
|
"train_labels": URL + "stance/hillary/train_labels.txt", |
|
"test_text": URL + "stance/hillary/test_text.txt", |
|
"test_labels": URL + "stance/hillary/test_labels.txt", |
|
"val_text": URL + "stance/hillary/val_text.txt", |
|
"val_labels": URL + "stance/hillary/val_labels.txt", |
|
}, |
|
}, |
|
} |
|
|
|
|
|
class TweetEvalConfig(datasets.BuilderConfig): |
|
def __init__(self, *args, type=None, sub_type=None, **kwargs): |
|
super().__init__( |
|
*args, |
|
name=f"{type}" if type != "stance" else f"{type}_{sub_type}", |
|
**kwargs, |
|
) |
|
self.type = type |
|
self.sub_type = sub_type |
|
|
|
|
|
class TweetEval(datasets.GeneratorBasedBuilder): |
|
"""TweetEval Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
TweetEvalConfig( |
|
type=key, |
|
sub_type=None, |
|
version=datasets.Version("1.1.0"), |
|
description=f"This part of my dataset covers {key} part of TweetEval Dataset.", |
|
) |
|
for key in list(_URLs.keys()) |
|
if key != "stance" |
|
] + [ |
|
TweetEvalConfig( |
|
type="stance", |
|
sub_type=key, |
|
version=datasets.Version("1.1.0"), |
|
description=f"This part of my dataset covers stance_{key} part of TweetEval Dataset.", |
|
) |
|
for key in list(_URLs["stance"].keys()) |
|
] |
|
|
|
def _info(self): |
|
if self.config.type == "stance": |
|
names = ["none", "against", "favor"] |
|
elif self.config.type == "sentiment": |
|
names = ["negative", "neutral", "positive"] |
|
elif self.config.type == "offensive": |
|
names = ["non-offensive", "offensive"] |
|
elif self.config.type == "irony": |
|
names = ["non_irony", "irony"] |
|
elif self.config.type == "hate": |
|
names = ["non-hate", "hate"] |
|
elif self.config.type == "emoji": |
|
names = [ |
|
"β€", |
|
"π", |
|
"π", |
|
"π", |
|
"π₯", |
|
"π", |
|
"π", |
|
"β¨", |
|
"π", |
|
"π", |
|
"π·", |
|
"πΊπΈ", |
|
"β", |
|
"π", |
|
"π", |
|
"π―", |
|
"π", |
|
"π", |
|
"πΈ", |
|
"π", |
|
] |
|
|
|
else: |
|
names = ["anger", "joy", "optimism", "sadness"] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=names)} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.type != "stance": |
|
my_urls = _URLs[self.config.type] |
|
else: |
|
my_urls = _URLs[self.config.type][self.config.sub_type] |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"text_path": data_dir["train_text"], "labels_path": data_dir["train_labels"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"text_path": data_dir["test_text"], "labels_path": data_dir["test_labels"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"text_path": data_dir["val_text"], "labels_path": data_dir["val_labels"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, text_path, labels_path): |
|
"""Yields examples.""" |
|
|
|
with open(text_path, encoding="utf-8") as f: |
|
texts = f.readlines() |
|
with open(labels_path, encoding="utf-8") as f: |
|
labels = f.readlines() |
|
for i, text in enumerate(texts): |
|
yield i, {"text": text.strip(), "label": int(labels[i].strip())} |