--- license: mit base_model: dbmdz/bert-base-turkish-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: TTC4900Model results: [] --- # TTC4900Model This model is a fine-tuned version of [dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2304 - Accuracy: 0.9341 - F1: 0.8963 - Precision: 0.9000 - Recall: 0.8989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 2.581 | 0.88 | 50 | 2.0974 | 0.4317 | 0.2930 | 0.4400 | 0.3556 | | 1.3915 | 1.75 | 100 | 0.6175 | 0.8590 | 0.8144 | 0.8008 | 0.8445 | | 0.3808 | 2.63 | 150 | 0.3171 | 0.8767 | 0.8481 | 0.9359 | 0.8620 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Tokenizers 0.15.0