shnl commited on
Commit
85a5533
·
1 Parent(s): c38e8a8

Finetune Version

Browse files
README.md CHANGED
@@ -1,3 +1,239 @@
1
  ---
2
- license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-13b-hf
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ## Training procedure
203
+
204
+
205
+ The following `bitsandbytes` quantization config was used during training:
206
+ - quant_method: bitsandbytes
207
+ - load_in_8bit: False
208
+ - load_in_4bit: True
209
+ - llm_int8_threshold: 6.0
210
+ - llm_int8_skip_modules: None
211
+ - llm_int8_enable_fp32_cpu_offload: False
212
+ - llm_int8_has_fp16_weight: False
213
+ - bnb_4bit_quant_type: nf4
214
+ - bnb_4bit_use_double_quant: True
215
+ - bnb_4bit_compute_dtype: bfloat16
216
+
217
+ ### Framework versions
218
+
219
+
220
+ - PEFT 0.6.2
221
+ ## Training procedure
222
+
223
+
224
+ The following `bitsandbytes` quantization config was used during training:
225
+ - quant_method: bitsandbytes
226
+ - load_in_8bit: False
227
+ - load_in_4bit: True
228
+ - llm_int8_threshold: 6.0
229
+ - llm_int8_skip_modules: None
230
+ - llm_int8_enable_fp32_cpu_offload: False
231
+ - llm_int8_has_fp16_weight: False
232
+ - bnb_4bit_quant_type: nf4
233
+ - bnb_4bit_use_double_quant: True
234
+ - bnb_4bit_compute_dtype: bfloat16
235
+
236
+ ### Framework versions
237
+
238
+
239
+ - PEFT 0.6.2
adapter_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-13b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.1,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 64,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "q_proj",
20
+ "v_proj"
21
+ ],
22
+ "task_type": "CAUSAL_LM"
23
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f815a3f040398dec8ff1684a035bb55c1f730bb36c4ba3c46f7ab93d7624062e
3
+ size 209773322
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0df7e210f4ddabd7e47899a1d095b988fdabffc1601183c7d236271f6c593608
3
+ size 209736952
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af348db41c036501250f6af38eaae8462b78751c6ff4452f83a11b7c656ae92d
3
+ size 419525754
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db7af214bc294763060623c0b95f7a4bddbfe29734f8edaba5bb2cd728416b58
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dff77de884fdfd840c04dcf625b12bec244243436a04eb2d0ca6ad5758a4ccf8
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "bos_token": "<s>",
29
+ "clean_up_tokenization_spaces": false,
30
+ "eos_token": "</s>",
31
+ "legacy": false,
32
+ "model_max_length": 1000000000000000019884624838656,
33
+ "pad_token": "</s>",
34
+ "padding_side": "right",
35
+ "sp_model_kwargs": {},
36
+ "tokenizer_class": "LlamaTokenizer",
37
+ "unk_token": "<unk>",
38
+ "use_default_system_prompt": false
39
+ }
trainer_state.json ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.393108848864527,
5
+ "eval_steps": 500,
6
+ "global_step": 10000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.16,
13
+ "learning_rate": 4.47427293064877e-05,
14
+ "loss": 0.9707,
15
+ "step": 200
16
+ },
17
+ {
18
+ "epoch": 0.31,
19
+ "learning_rate": 8.94854586129754e-05,
20
+ "loss": 0.8675,
21
+ "step": 400
22
+ },
23
+ {
24
+ "epoch": 0.39,
25
+ "eval_loss": 0.8843975067138672,
26
+ "eval_runtime": 442.5039,
27
+ "eval_samples_per_second": 2.26,
28
+ "eval_steps_per_second": 0.282,
29
+ "step": 500
30
+ },
31
+ {
32
+ "epoch": 0.47,
33
+ "learning_rate": 9.81983042863872e-05,
34
+ "loss": 0.869,
35
+ "step": 600
36
+ },
37
+ {
38
+ "epoch": 0.63,
39
+ "learning_rate": 9.584314649081489e-05,
40
+ "loss": 0.8435,
41
+ "step": 800
42
+ },
43
+ {
44
+ "epoch": 1.1,
45
+ "learning_rate": 9.348798869524259e-05,
46
+ "loss": 0.8391,
47
+ "step": 1000
48
+ },
49
+ {
50
+ "epoch": 1.1,
51
+ "eval_loss": 0.8687868118286133,
52
+ "eval_runtime": 442.7965,
53
+ "eval_samples_per_second": 2.258,
54
+ "eval_steps_per_second": 0.282,
55
+ "step": 1000
56
+ },
57
+ {
58
+ "epoch": 1.25,
59
+ "learning_rate": 9.113283089967028e-05,
60
+ "loss": 0.8371,
61
+ "step": 1200
62
+ },
63
+ {
64
+ "epoch": 1.41,
65
+ "learning_rate": 8.877767310409798e-05,
66
+ "loss": 0.8392,
67
+ "step": 1400
68
+ },
69
+ {
70
+ "epoch": 1.49,
71
+ "eval_loss": 0.8612309098243713,
72
+ "eval_runtime": 442.6374,
73
+ "eval_samples_per_second": 2.259,
74
+ "eval_steps_per_second": 0.282,
75
+ "step": 1500
76
+ },
77
+ {
78
+ "epoch": 1.57,
79
+ "learning_rate": 8.642251530852568e-05,
80
+ "loss": 0.8183,
81
+ "step": 1600
82
+ },
83
+ {
84
+ "epoch": 2.03,
85
+ "learning_rate": 8.406735751295337e-05,
86
+ "loss": 0.8213,
87
+ "step": 1800
88
+ },
89
+ {
90
+ "epoch": 2.19,
91
+ "learning_rate": 8.171219971738107e-05,
92
+ "loss": 0.8163,
93
+ "step": 2000
94
+ },
95
+ {
96
+ "epoch": 2.19,
97
+ "eval_loss": 0.8562428951263428,
98
+ "eval_runtime": 442.5846,
99
+ "eval_samples_per_second": 2.259,
100
+ "eval_steps_per_second": 0.282,
101
+ "step": 2000
102
+ },
103
+ {
104
+ "epoch": 2.35,
105
+ "learning_rate": 7.935704192180876e-05,
106
+ "loss": 0.819,
107
+ "step": 2200
108
+ },
109
+ {
110
+ "epoch": 2.5,
111
+ "learning_rate": 7.700188412623646e-05,
112
+ "loss": 0.8174,
113
+ "step": 2400
114
+ },
115
+ {
116
+ "epoch": 2.58,
117
+ "eval_loss": 0.8525461554527283,
118
+ "eval_runtime": 442.6136,
119
+ "eval_samples_per_second": 2.259,
120
+ "eval_steps_per_second": 0.282,
121
+ "step": 2500
122
+ },
123
+ {
124
+ "epoch": 2.66,
125
+ "learning_rate": 7.464672633066417e-05,
126
+ "loss": 0.8,
127
+ "step": 2600
128
+ },
129
+ {
130
+ "epoch": 3.13,
131
+ "learning_rate": 7.229156853509186e-05,
132
+ "loss": 0.8046,
133
+ "step": 2800
134
+ },
135
+ {
136
+ "epoch": 3.29,
137
+ "learning_rate": 6.993641073951955e-05,
138
+ "loss": 0.8017,
139
+ "step": 3000
140
+ },
141
+ {
142
+ "epoch": 3.29,
143
+ "eval_loss": 0.8500803112983704,
144
+ "eval_runtime": 441.7181,
145
+ "eval_samples_per_second": 2.264,
146
+ "eval_steps_per_second": 0.283,
147
+ "step": 3000
148
+ },
149
+ {
150
+ "epoch": 3.44,
151
+ "learning_rate": 6.758125294394724e-05,
152
+ "loss": 0.8012,
153
+ "step": 3200
154
+ },
155
+ {
156
+ "epoch": 3.6,
157
+ "learning_rate": 6.522609514837494e-05,
158
+ "loss": 0.7871,
159
+ "step": 3400
160
+ },
161
+ {
162
+ "epoch": 3.68,
163
+ "eval_loss": 0.8471158742904663,
164
+ "eval_runtime": 442.6212,
165
+ "eval_samples_per_second": 2.259,
166
+ "eval_steps_per_second": 0.282,
167
+ "step": 3500
168
+ },
169
+ {
170
+ "epoch": 4.07,
171
+ "learning_rate": 6.287093735280264e-05,
172
+ "loss": 0.7904,
173
+ "step": 3600
174
+ },
175
+ {
176
+ "epoch": 4.23,
177
+ "learning_rate": 6.051577955723033e-05,
178
+ "loss": 0.7905,
179
+ "step": 3800
180
+ },
181
+ {
182
+ "epoch": 4.38,
183
+ "learning_rate": 5.816062176165803e-05,
184
+ "loss": 0.7922,
185
+ "step": 4000
186
+ },
187
+ {
188
+ "epoch": 4.38,
189
+ "eval_loss": 0.8460286259651184,
190
+ "eval_runtime": 442.9433,
191
+ "eval_samples_per_second": 2.258,
192
+ "eval_steps_per_second": 0.282,
193
+ "step": 4000
194
+ },
195
+ {
196
+ "epoch": 4.54,
197
+ "learning_rate": 5.580546396608574e-05,
198
+ "loss": 0.7803,
199
+ "step": 4200
200
+ },
201
+ {
202
+ "epoch": 5.01,
203
+ "learning_rate": 5.345030617051343e-05,
204
+ "loss": 0.7768,
205
+ "step": 4400
206
+ },
207
+ {
208
+ "epoch": 5.09,
209
+ "eval_loss": 0.8444392085075378,
210
+ "eval_runtime": 442.6584,
211
+ "eval_samples_per_second": 2.259,
212
+ "eval_steps_per_second": 0.282,
213
+ "step": 4500
214
+ },
215
+ {
216
+ "epoch": 5.16,
217
+ "learning_rate": 5.109514837494113e-05,
218
+ "loss": 0.7749,
219
+ "step": 4600
220
+ },
221
+ {
222
+ "epoch": 5.32,
223
+ "learning_rate": 4.873999057936882e-05,
224
+ "loss": 0.7816,
225
+ "step": 4800
226
+ },
227
+ {
228
+ "epoch": 5.48,
229
+ "learning_rate": 4.6384832783796514e-05,
230
+ "loss": 0.7783,
231
+ "step": 5000
232
+ },
233
+ {
234
+ "epoch": 5.48,
235
+ "eval_loss": 0.8443465828895569,
236
+ "eval_runtime": 442.6282,
237
+ "eval_samples_per_second": 2.259,
238
+ "eval_steps_per_second": 0.282,
239
+ "step": 5000
240
+ },
241
+ {
242
+ "epoch": 5.63,
243
+ "learning_rate": 4.402967498822421e-05,
244
+ "loss": 0.7628,
245
+ "step": 5200
246
+ },
247
+ {
248
+ "epoch": 6.1,
249
+ "learning_rate": 4.1674517192651906e-05,
250
+ "loss": 0.7704,
251
+ "step": 5400
252
+ },
253
+ {
254
+ "epoch": 6.18,
255
+ "eval_loss": 0.8435388803482056,
256
+ "eval_runtime": 441.9862,
257
+ "eval_samples_per_second": 2.263,
258
+ "eval_steps_per_second": 0.283,
259
+ "step": 5500
260
+ },
261
+ {
262
+ "epoch": 4.39,
263
+ "learning_rate": 5.9104772895886576e-05,
264
+ "loss": 0.7683,
265
+ "step": 5600
266
+ },
267
+ {
268
+ "epoch": 4.54,
269
+ "learning_rate": 5.7456104195861845e-05,
270
+ "loss": 0.7639,
271
+ "step": 5800
272
+ },
273
+ {
274
+ "epoch": 5.01,
275
+ "learning_rate": 5.5807435495837115e-05,
276
+ "loss": 0.7563,
277
+ "step": 6000
278
+ },
279
+ {
280
+ "epoch": 5.01,
281
+ "eval_loss": 0.8438097238540649,
282
+ "eval_runtime": 443.5275,
283
+ "eval_samples_per_second": 2.255,
284
+ "eval_steps_per_second": 0.282,
285
+ "step": 6000
286
+ },
287
+ {
288
+ "epoch": 5.17,
289
+ "learning_rate": 5.4158766795812385e-05,
290
+ "loss": 0.7678,
291
+ "step": 6200
292
+ },
293
+ {
294
+ "epoch": 5.32,
295
+ "learning_rate": 5.2510098095787654e-05,
296
+ "loss": 0.7622,
297
+ "step": 6400
298
+ },
299
+ {
300
+ "epoch": 5.4,
301
+ "eval_loss": 0.8434909582138062,
302
+ "eval_runtime": 442.3289,
303
+ "eval_samples_per_second": 2.261,
304
+ "eval_steps_per_second": 0.283,
305
+ "step": 6500
306
+ },
307
+ {
308
+ "epoch": 5.48,
309
+ "learning_rate": 5.0861429395762924e-05,
310
+ "loss": 0.7614,
311
+ "step": 6600
312
+ },
313
+ {
314
+ "epoch": 5.64,
315
+ "learning_rate": 4.9212760695738194e-05,
316
+ "loss": 0.7523,
317
+ "step": 6800
318
+ },
319
+ {
320
+ "epoch": 6.11,
321
+ "learning_rate": 4.756409199571346e-05,
322
+ "loss": 0.7543,
323
+ "step": 7000
324
+ },
325
+ {
326
+ "epoch": 6.11,
327
+ "eval_loss": 0.8428276777267456,
328
+ "eval_runtime": 441.0423,
329
+ "eval_samples_per_second": 2.267,
330
+ "eval_steps_per_second": 0.283,
331
+ "step": 7000
332
+ },
333
+ {
334
+ "epoch": 6.26,
335
+ "learning_rate": 4.591542329568873e-05,
336
+ "loss": 0.75,
337
+ "step": 7200
338
+ },
339
+ {
340
+ "epoch": 6.42,
341
+ "learning_rate": 4.426675459566401e-05,
342
+ "loss": 0.7558,
343
+ "step": 7400
344
+ },
345
+ {
346
+ "epoch": 6.5,
347
+ "eval_loss": 0.8445137739181519,
348
+ "eval_runtime": 443.1939,
349
+ "eval_samples_per_second": 2.256,
350
+ "eval_steps_per_second": 0.282,
351
+ "step": 7500
352
+ },
353
+ {
354
+ "epoch": 6.58,
355
+ "learning_rate": 4.261808589563928e-05,
356
+ "loss": 0.7397,
357
+ "step": 7600
358
+ },
359
+ {
360
+ "epoch": 7.05,
361
+ "learning_rate": 4.096941719561455e-05,
362
+ "loss": 0.7481,
363
+ "step": 7800
364
+ },
365
+ {
366
+ "epoch": 7.2,
367
+ "learning_rate": 3.932074849558982e-05,
368
+ "loss": 0.7489,
369
+ "step": 8000
370
+ },
371
+ {
372
+ "epoch": 7.2,
373
+ "eval_loss": 0.8432251811027527,
374
+ "eval_runtime": 443.2253,
375
+ "eval_samples_per_second": 2.256,
376
+ "eval_steps_per_second": 0.282,
377
+ "step": 8000
378
+ },
379
+ {
380
+ "epoch": 7.36,
381
+ "learning_rate": 3.767207979556509e-05,
382
+ "loss": 0.7443,
383
+ "step": 8200
384
+ },
385
+ {
386
+ "epoch": 7.52,
387
+ "learning_rate": 3.602341109554036e-05,
388
+ "loss": 0.7401,
389
+ "step": 8400
390
+ },
391
+ {
392
+ "epoch": 7.59,
393
+ "eval_loss": 0.8452141284942627,
394
+ "eval_runtime": 442.3668,
395
+ "eval_samples_per_second": 2.261,
396
+ "eval_steps_per_second": 0.283,
397
+ "step": 8500
398
+ },
399
+ {
400
+ "epoch": 7.67,
401
+ "learning_rate": 3.437474239551563e-05,
402
+ "loss": 0.7293,
403
+ "step": 8600
404
+ },
405
+ {
406
+ "epoch": 8.14,
407
+ "learning_rate": 3.27260736954909e-05,
408
+ "loss": 0.7377,
409
+ "step": 8800
410
+ },
411
+ {
412
+ "epoch": 8.3,
413
+ "learning_rate": 3.107740499546617e-05,
414
+ "loss": 0.7423,
415
+ "step": 9000
416
+ },
417
+ {
418
+ "epoch": 8.3,
419
+ "eval_loss": 0.8452991843223572,
420
+ "eval_runtime": 441.364,
421
+ "eval_samples_per_second": 2.266,
422
+ "eval_steps_per_second": 0.283,
423
+ "step": 9000
424
+ },
425
+ {
426
+ "epoch": 8.45,
427
+ "learning_rate": 2.9428736295441433e-05,
428
+ "loss": 0.7355,
429
+ "step": 9200
430
+ },
431
+ {
432
+ "epoch": 8.61,
433
+ "learning_rate": 2.7780067595416703e-05,
434
+ "loss": 0.7278,
435
+ "step": 9400
436
+ },
437
+ {
438
+ "epoch": 9.0,
439
+ "eval_loss": 0.8456013798713684,
440
+ "eval_runtime": 442.0654,
441
+ "eval_samples_per_second": 2.262,
442
+ "eval_steps_per_second": 0.283,
443
+ "step": 9500
444
+ },
445
+ {
446
+ "epoch": 9.08,
447
+ "learning_rate": 2.6131398895391972e-05,
448
+ "loss": 0.7284,
449
+ "step": 9600
450
+ },
451
+ {
452
+ "epoch": 9.24,
453
+ "learning_rate": 2.4482730195367242e-05,
454
+ "loss": 0.7292,
455
+ "step": 9800
456
+ },
457
+ {
458
+ "epoch": 9.39,
459
+ "learning_rate": 2.283406149534251e-05,
460
+ "loss": 0.733,
461
+ "step": 10000
462
+ },
463
+ {
464
+ "epoch": 9.39,
465
+ "eval_loss": 0.8464317321777344,
466
+ "eval_runtime": 440.6145,
467
+ "eval_samples_per_second": 2.27,
468
+ "eval_steps_per_second": 0.284,
469
+ "step": 10000
470
+ }
471
+ ],
472
+ "logging_steps": 200,
473
+ "max_steps": 12770,
474
+ "num_train_epochs": 10,
475
+ "save_steps": 500,
476
+ "total_flos": 1.2680360787726828e+19,
477
+ "trial_name": null,
478
+ "trial_params": null
479
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb087bc10e6fa1d702321b8c25a51456d329b43b96e6e3a31e4736e3b32fbe49
3
+ size 4536