Update README.md
Browse files
README.md
CHANGED
@@ -1,198 +1,98 @@
|
|
1 |
---
|
|
|
|
|
2 |
library_name: diffusers
|
3 |
---
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
|
23 |
-
|
24 |
-
- **
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
-
|
100 |
-
[More Information Needed]
|
101 |
-
|
102 |
-
## Evaluation
|
103 |
-
|
104 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
-
|
106 |
-
### Testing Data, Factors & Metrics
|
107 |
-
|
108 |
-
#### Testing Data
|
109 |
-
|
110 |
-
<!-- This should link to a Dataset Card if possible. -->
|
111 |
-
|
112 |
-
[More Information Needed]
|
113 |
-
|
114 |
-
#### Factors
|
115 |
-
|
116 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
-
|
118 |
-
[More Information Needed]
|
119 |
-
|
120 |
-
#### Metrics
|
121 |
-
|
122 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
### Results
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
#### Summary
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
## Model Examination [optional]
|
135 |
-
|
136 |
-
<!-- Relevant interpretability work for the model goes here -->
|
137 |
-
|
138 |
-
[More Information Needed]
|
139 |
-
|
140 |
-
## Environmental Impact
|
141 |
-
|
142 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
-
|
144 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
-
|
146 |
-
- **Hardware Type:** [More Information Needed]
|
147 |
-
- **Hours used:** [More Information Needed]
|
148 |
-
- **Cloud Provider:** [More Information Needed]
|
149 |
-
- **Compute Region:** [More Information Needed]
|
150 |
-
- **Carbon Emitted:** [More Information Needed]
|
151 |
-
|
152 |
-
## Technical Specifications [optional]
|
153 |
-
|
154 |
-
### Model Architecture and Objective
|
155 |
-
|
156 |
-
[More Information Needed]
|
157 |
-
|
158 |
-
### Compute Infrastructure
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
#### Hardware
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
-
|
166 |
-
#### Software
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
-
|
170 |
-
## Citation [optional]
|
171 |
-
|
172 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
-
|
174 |
-
**BibTeX:**
|
175 |
-
|
176 |
-
[More Information Needed]
|
177 |
-
|
178 |
-
**APA:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
## Glossary [optional]
|
183 |
-
|
184 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
## More Information [optional]
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## Model Card Authors [optional]
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
-
|
196 |
-
## Model Card Contact
|
197 |
-
|
198 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: any-to-any
|
4 |
library_name: diffusers
|
5 |
---
|
6 |
|
7 |
+
<div align="center">
|
8 |
+
<br>
|
9 |
+
|
10 |
+
[//]: # (<h3>Show-o2: Improved Unified Multimodal Models</h3>)
|
11 |
+
|
12 |
+
[Jinheng Xie](https://sierkinhane.github.io/)<sup>1</sup>
|
13 |
+
[Zhenheng Yang](https://scholar.google.com/citations?user=Ds5wwRoAAAAJ&hl=en)<sup>2</sup>
|
14 |
+
[Mike Zheng Shou](https://sites.google.com/view/showlab)<sup>1</sup>
|
15 |
+
|
16 |
+
<sup>1</sup> [Show Lab](https://sites.google.com/view/showlab/home?authuser=0), National University of Singapore <sup>2</sup> Bytedance
|
17 |
+
|
18 |
+
[](https://arxiv.org/abs/2506.15564) [](https://github.com/showlab/Show-o/tree/main/show-o2) [](https://github.com/showlab/Show-o/blob/main/docs/wechat_qa_3.jpg)
|
19 |
+
</div>
|
20 |
+
|
21 |
+
## Abstract
|
22 |
+
|
23 |
+
This paper presents improved native unified multimodal models, \emph{i.e.,} Show-o2, that leverage autoregressive modeling and flow matching. Built upon a 3D causal variational autoencoder space, unified visual representations are constructed through a dual-path of spatial (-temporal) fusion, enabling scalability across image and video modalities while ensuring effective multimodal understanding and generation. Based on a language model, autoregressive modeling and flow matching are natively applied to the language head and flow head, respectively, to facilitate text token prediction and image/video generation. A two-stage training recipe is designed to effectively learn and scale to larger models. The resulting Show-o2 models demonstrate versatility in handling a wide range of multimodal understanding and generation tasks across diverse modalities, including text, images, and videos. Code and models are released at this https URL .
|
24 |
+
|
25 |
+
## What is the new about Show-o2?
|
26 |
+
We perform the unified learning of multimodal understanding and generation on the text token and **3D Causal VAE space**, which is scalable for **text, image, and video modalities**. A dual-path of spatial (-temporal) fusion is proposed to accommodate the distinct feature dependency of multimodal understanding and generation. We employ specific heads with **autoregressive modeling and flow matching** for the overall unified learning of **multimodal understanding, image/video and mixed-modality generation.**
|
27 |
+
<img src="overview.png" width="1000">
|
28 |
+
|
29 |
+
## Pre-trained Model Weigths
|
30 |
+
The Show-o2 checkpoints can be found on Hugging Face:
|
31 |
+
* [showlab/show-o2-1.5B](https://huggingface.co/showlab/show-o2-1.5B)
|
32 |
+
* [showlab/show-o2-1.5B-HQ](https://huggingface.co/showlab/show-o2-1.5B-HQ)
|
33 |
+
* [showlab/show-o2-7B](https://huggingface.co/showlab/show-o2-7B)
|
34 |
+
* [showlab/show-o2-1.5B](https://huggingface.co/showlab/show-o2-1.5B-w-video-und) (further unified fine-tuning on video understanding data)
|
35 |
+
* [showlab/show-o2-7B](https://huggingface.co/showlab/show-o2-7B-w-video-und) (further unified fine-tuning on video understanding data)
|
36 |
+
|
37 |
+
|
38 |
+
## Getting Started
|
39 |
+
First, set up the environment:
|
40 |
+
```
|
41 |
+
bash build_env.sh
|
42 |
+
```
|
43 |
+
Login your wandb account on your machine or server.
|
44 |
+
```
|
45 |
+
wandb login <your wandb keys>
|
46 |
+
```
|
47 |
+
Download Wan2.1 3D causal VAE model weight [here](https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/blob/main/Wan2.1_VAE.pth) and put it on the current directory.
|
48 |
+
|
49 |
+
Demo for **Multimodal Understanding** and you can find the results on wandb.
|
50 |
+
|
51 |
+
```
|
52 |
+
# image-level
|
53 |
+
python3 inference_mmu.py config=configs/showo2_7b_demo_432x432.yaml \
|
54 |
+
mmu_image_path=./docs/mmu/pexels-jane-pham-727419-1571673.jpg question='Describe the image in detail.'
|
55 |
+
|
56 |
+
python3 inference_mmu.py config=configs/showo2_7b_demo_432x432.yaml \
|
57 |
+
mmu_image_path=./docs/mmu/pexels-fotios-photos-2923436.jpg question='请告诉我图片中写着什么?'
|
58 |
+
|
59 |
+
python3 inference_mmu.py config=configs/showo2_7b_demo_432x432.yaml \
|
60 |
+
mmu_image_path=./docs/mmu/pexels-taryn-elliott-4144459.jpg question='How many avocados (including the halved) are in this image? Tell me how to make an avocado milkshake in detail.'
|
61 |
+
|
62 |
+
# video
|
63 |
+
python3 inference_mmu_vid.py config=configs/showo2_7b_demo_video_understanding.yaml \
|
64 |
+
mmu_video_path='./docs/videos/' question="Describe the video." \
|
65 |
+
num_video_frames_mmu=32
|
66 |
+
|
67 |
+
python3 inference_mmu_vid.py config=configs/showo2_1.5b_demo_video_understanding.yaml \
|
68 |
+
mmu_video_path='./docs/videos/' question="Describe the video." \
|
69 |
+
num_video_frames_mmu=32
|
70 |
+
|
71 |
+
```
|
72 |
+
Demo for **Text-to-Image Generation** and you can find the results on wandb.
|
73 |
+
```
|
74 |
+
python3 inference_t2i.py config=configs/showo2_1.5b_demo_1024x1024.yaml \
|
75 |
+
batch_size=4 guidance_scale=7.5 num_inference_steps=50;
|
76 |
+
|
77 |
+
python3 inference_t2i.py config=configs/showo2_1.5b_demo_512x512.yaml \
|
78 |
+
batch_size=4 guidance_scale=7.5 num_inference_steps=50;
|
79 |
+
|
80 |
+
python3 inference_t2i.py config=configs/showo2_1.5b_demo_432x432.yaml \
|
81 |
+
batch_size=4 guidance_scale=7.5 num_inference_steps=50;
|
82 |
+
|
83 |
+
python3 inference_t2i.py config=configs/showo2_7b_demo_432x432.yaml \
|
84 |
+
batch_size=4 guidance_scale=7.5 num_inference_steps=50;
|
85 |
+
```
|
86 |
+
|
87 |
+
### Citation
|
88 |
+
To cite the paper and model, please use the below:
|
89 |
+
```
|
90 |
+
@article{xie2025showo2,
|
91 |
+
title={Show-o2: Improved Native Unified Multimodal Models},
|
92 |
+
author={Xie, Jinheng and Yang, Zhenheng and Shou, Mike Zheng},
|
93 |
+
journal={arXiv preprint},
|
94 |
+
year={2025}
|
95 |
+
}
|
96 |
+
```
|
97 |
+
### Acknowledgments
|
98 |
+
This work is heavily based on [Show-o](https://github.com/showlab/Show-o).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|