Any-to-Any
Diffusers
PyTorch
Sierkinhane commited on
Commit
d115abe
·
verified ·
1 Parent(s): 5a9183f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -194
README.md CHANGED
@@ -1,198 +1,98 @@
1
  ---
 
 
2
  library_name: diffusers
3
  ---
4
 
5
- # Model Card for Model ID
6
-
7
- <!-- Provide a quick summary of what the model is/does. -->
8
-
9
-
10
-
11
- ## Model Details
12
-
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
- This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
-
27
- ### Model Sources [optional]
28
-
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
-
35
- ## Uses
36
-
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
-
69
- ## How to Get Started with the Model
70
-
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
-
75
- ## Training Details
76
-
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
-
102
- ## Evaluation
103
-
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
-
106
- ### Testing Data, Factors & Metrics
107
-
108
- #### Testing Data
109
-
110
- <!-- This should link to a Dataset Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Results
127
-
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
-
154
- ### Model Architecture and Objective
155
-
156
- [More Information Needed]
157
-
158
- ### Compute Infrastructure
159
-
160
- [More Information Needed]
161
-
162
- #### Hardware
163
-
164
- [More Information Needed]
165
-
166
- #### Software
167
-
168
- [More Information Needed]
169
-
170
- ## Citation [optional]
171
-
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
-
174
- **BibTeX:**
175
-
176
- [More Information Needed]
177
-
178
- **APA:**
179
-
180
- [More Information Needed]
181
-
182
- ## Glossary [optional]
183
-
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
-
186
- [More Information Needed]
187
-
188
- ## More Information [optional]
189
-
190
- [More Information Needed]
191
-
192
- ## Model Card Authors [optional]
193
-
194
- [More Information Needed]
195
-
196
- ## Model Card Contact
197
-
198
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ pipeline_tag: any-to-any
4
  library_name: diffusers
5
  ---
6
 
7
+ <div align="center">
8
+ <br>
9
+
10
+ [//]: # (<h3>Show-o2: Improved Unified Multimodal Models</h3>)
11
+
12
+ [Jinheng Xie](https://sierkinhane.github.io/)<sup>1</sup>&nbsp;
13
+ [Zhenheng Yang](https://scholar.google.com/citations?user=Ds5wwRoAAAAJ&hl=en)<sup>2</sup>&nbsp;
14
+ [Mike Zheng Shou](https://sites.google.com/view/showlab)<sup>1</sup>
15
+
16
+ <sup>1</sup> [Show Lab](https://sites.google.com/view/showlab/home?authuser=0), National University of Singapore&nbsp; <sup>2</sup> Bytedance&nbsp;
17
+
18
+ [![ArXiv](https://img.shields.io/badge/Arxiv-<2506.15564>-<COLOR>.svg)](https://arxiv.org/abs/2506.15564) [![Code](https://img.shields.io/badge/Code-<GitHub_Repository>-<COLOR>.svg)](https://github.com/showlab/Show-o/tree/main/show-o2) [![WeChat badge](https://img.shields.io/badge/微信-加入-green?logo=wechat&amp)](https://github.com/showlab/Show-o/blob/main/docs/wechat_qa_3.jpg)
19
+ </div>
20
+
21
+ ## Abstract
22
+
23
+ This paper presents improved native unified multimodal models, \emph{i.e.,} Show-o2, that leverage autoregressive modeling and flow matching. Built upon a 3D causal variational autoencoder space, unified visual representations are constructed through a dual-path of spatial (-temporal) fusion, enabling scalability across image and video modalities while ensuring effective multimodal understanding and generation. Based on a language model, autoregressive modeling and flow matching are natively applied to the language head and flow head, respectively, to facilitate text token prediction and image/video generation. A two-stage training recipe is designed to effectively learn and scale to larger models. The resulting Show-o2 models demonstrate versatility in handling a wide range of multimodal understanding and generation tasks across diverse modalities, including text, images, and videos. Code and models are released at this https URL .
24
+
25
+ ## What is the new about Show-o2?
26
+ We perform the unified learning of multimodal understanding and generation on the text token and **3D Causal VAE space**, which is scalable for **text, image, and video modalities**. A dual-path of spatial (-temporal) fusion is proposed to accommodate the distinct feature dependency of multimodal understanding and generation. We employ specific heads with **autoregressive modeling and flow matching** for the overall unified learning of **multimodal understanding, image/video and mixed-modality generation.**
27
+ <img src="overview.png" width="1000">
28
+
29
+ ## Pre-trained Model Weigths
30
+ The Show-o2 checkpoints can be found on Hugging Face:
31
+ * [showlab/show-o2-1.5B](https://huggingface.co/showlab/show-o2-1.5B)
32
+ * [showlab/show-o2-1.5B-HQ](https://huggingface.co/showlab/show-o2-1.5B-HQ)
33
+ * [showlab/show-o2-7B](https://huggingface.co/showlab/show-o2-7B)
34
+ * [showlab/show-o2-1.5B](https://huggingface.co/showlab/show-o2-1.5B-w-video-und) (further unified fine-tuning on video understanding data)
35
+ * [showlab/show-o2-7B](https://huggingface.co/showlab/show-o2-7B-w-video-und) (further unified fine-tuning on video understanding data)
36
+
37
+
38
+ ## Getting Started
39
+ First, set up the environment:
40
+ ```
41
+ bash build_env.sh
42
+ ```
43
+ Login your wandb account on your machine or server.
44
+ ```
45
+ wandb login <your wandb keys>
46
+ ```
47
+ Download Wan2.1 3D causal VAE model weight [here](https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/blob/main/Wan2.1_VAE.pth) and put it on the current directory.
48
+
49
+ Demo for **Multimodal Understanding** and you can find the results on wandb.
50
+
51
+ ```
52
+ # image-level
53
+ python3 inference_mmu.py config=configs/showo2_7b_demo_432x432.yaml \
54
+ mmu_image_path=./docs/mmu/pexels-jane-pham-727419-1571673.jpg question='Describe the image in detail.'
55
+
56
+ python3 inference_mmu.py config=configs/showo2_7b_demo_432x432.yaml \
57
+ mmu_image_path=./docs/mmu/pexels-fotios-photos-2923436.jpg question='请告诉我图片中写着什么?'
58
+
59
+ python3 inference_mmu.py config=configs/showo2_7b_demo_432x432.yaml \
60
+ mmu_image_path=./docs/mmu/pexels-taryn-elliott-4144459.jpg question='How many avocados (including the halved) are in this image? Tell me how to make an avocado milkshake in detail.'
61
+
62
+ # video
63
+ python3 inference_mmu_vid.py config=configs/showo2_7b_demo_video_understanding.yaml \
64
+ mmu_video_path='./docs/videos/' question="Describe the video." \
65
+ num_video_frames_mmu=32
66
+
67
+ python3 inference_mmu_vid.py config=configs/showo2_1.5b_demo_video_understanding.yaml \
68
+ mmu_video_path='./docs/videos/' question="Describe the video." \
69
+ num_video_frames_mmu=32
70
+
71
+ ```
72
+ Demo for **Text-to-Image Generation** and you can find the results on wandb.
73
+ ```
74
+ python3 inference_t2i.py config=configs/showo2_1.5b_demo_1024x1024.yaml \
75
+ batch_size=4 guidance_scale=7.5 num_inference_steps=50;
76
+
77
+ python3 inference_t2i.py config=configs/showo2_1.5b_demo_512x512.yaml \
78
+ batch_size=4 guidance_scale=7.5 num_inference_steps=50;
79
+
80
+ python3 inference_t2i.py config=configs/showo2_1.5b_demo_432x432.yaml \
81
+ batch_size=4 guidance_scale=7.5 num_inference_steps=50;
82
+
83
+ python3 inference_t2i.py config=configs/showo2_7b_demo_432x432.yaml \
84
+ batch_size=4 guidance_scale=7.5 num_inference_steps=50;
85
+ ```
86
+
87
+ ### Citation
88
+ To cite the paper and model, please use the below:
89
+ ```
90
+ @article{xie2025showo2,
91
+ title={Show-o2: Improved Native Unified Multimodal Models},
92
+ author={Xie, Jinheng and Yang, Zhenheng and Shou, Mike Zheng},
93
+ journal={arXiv preprint},
94
+ year={2025}
95
+ }
96
+ ```
97
+ ### Acknowledgments
98
+ This work is heavily based on [Show-o](https://github.com/showlab/Show-o).